mirror of https://github.com/commaai/tinygrad.git
add mnist example
This commit is contained in:
parent
5939427795
commit
1ea9ab3e9c
|
@ -0,0 +1,78 @@
|
|||
#!/usr/bin/env python
|
||||
import numpy as np
|
||||
from tensor import Tensor
|
||||
from tqdm import trange
|
||||
|
||||
# load the mnist dataset
|
||||
|
||||
def fetch(url):
|
||||
import requests, gzip, os, hashlib, numpy
|
||||
fp = os.path.join("/tmp", hashlib.md5(url.encode('utf-8')).hexdigest())
|
||||
if not os.path.isfile(fp):
|
||||
with open(fp, "rb") as f:
|
||||
dat = f.read()
|
||||
else:
|
||||
with open(fp, "wb") as f:
|
||||
dat = requests.get(url).content
|
||||
f.write(dat)
|
||||
return numpy.frombuffer(gzip.decompress(dat), dtype=np.uint8).copy()
|
||||
X_train = fetch("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz")[0x10:].reshape((-1, 28, 28))
|
||||
Y_train = fetch("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz")[8:]
|
||||
X_test = fetch("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz")[0x10:].reshape((-1, 28, 28))
|
||||
Y_test = fetch("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz")[8:]
|
||||
|
||||
# train a model
|
||||
|
||||
def layer_init(m, h):
|
||||
ret = np.random.uniform(-1., 1., size=(m,h))/np.sqrt(m*h)
|
||||
return ret.astype(np.float32)
|
||||
|
||||
l1 = Tensor(layer_init(784, 128))
|
||||
l2 = Tensor(layer_init(128, 10))
|
||||
|
||||
lr = 0.01
|
||||
BS = 128
|
||||
losses, accuracies = [], []
|
||||
for i in (t := trange(1000)):
|
||||
samp = np.random.randint(0, X_train.shape[0], size=(BS))
|
||||
|
||||
x = Tensor(X_train[samp].reshape((-1, 28*28)))
|
||||
Y = Y_train[samp]
|
||||
y = np.zeros((len(samp),10), np.float32)
|
||||
y[range(y.shape[0]),Y] = -1.0
|
||||
y = Tensor(y)
|
||||
|
||||
x = x.dot(l1)
|
||||
x = x.relu()
|
||||
x = x_l2 = x.dot(l2)
|
||||
x = x.logsoftmax()
|
||||
x = x.mul(y)
|
||||
x = x.mean()
|
||||
x.backward()
|
||||
|
||||
loss = x.data
|
||||
cat = np.argmax(x_l2.data, axis=1)
|
||||
accuracy = (cat == Y).mean()
|
||||
|
||||
# SGD
|
||||
l1.data = l1.data - lr*l1.grad
|
||||
l2.data = l2.data - lr*l2.grad
|
||||
|
||||
losses.append(loss)
|
||||
accuracies.append(accuracy)
|
||||
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
|
||||
|
||||
# numpy forward pass
|
||||
def forward(x):
|
||||
x = x.dot(l1.data)
|
||||
x = np.maximum(x, 0)
|
||||
x = x.dot(l2.data)
|
||||
return x
|
||||
|
||||
def numpy_eval():
|
||||
Y_test_preds_out = forward(X_test.reshape((-1, 28*28)))
|
||||
Y_test_preds = np.argmax(Y_test_preds_out, axis=1)
|
||||
return (Y_test == Y_test_preds).mean()
|
||||
|
||||
print("test set accuracy is %f" % numpy_eval())
|
||||
|
|
@ -50,6 +50,10 @@ class Tensor:
|
|||
t.grad = g
|
||||
t.backward(False)
|
||||
|
||||
def mean(self):
|
||||
div = Tensor(np.array([1/self.data.size]))
|
||||
return self.sum().mul(div)
|
||||
|
||||
class Function:
|
||||
def apply(self, arg, *x):
|
||||
ctx = Context(arg, self, *x)
|
||||
|
@ -107,7 +111,7 @@ class Sum(Function):
|
|||
@staticmethod
|
||||
def forward(ctx, input):
|
||||
ctx.save_for_backward(input)
|
||||
return np.array(input.sum())
|
||||
return np.array([input.sum()])
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
|
|
Loading…
Reference in New Issue