2023-09-29 19:40:35 +08:00
|
|
|
import unittest
|
|
|
|
from tinygrad.helpers import Timing
|
|
|
|
from tinygrad.tensor import Tensor
|
|
|
|
from tinygrad.ops import LoadOps
|
|
|
|
from tinygrad.codegen.linearizer import Linearizer
|
2023-10-07 19:39:21 +08:00
|
|
|
from test.test_net_speed import start_profile, stop_profile
|
2023-09-29 19:40:35 +08:00
|
|
|
|
|
|
|
class TestWinograd(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
|
|
self.old = Tensor.wino
|
|
|
|
Tensor.wino = 1
|
|
|
|
def tearDown(self): Tensor.wino = self.old
|
|
|
|
|
|
|
|
def test_speed(self):
|
|
|
|
x = Tensor.empty(1,4,9,9)
|
|
|
|
w = Tensor.empty(4,4,3,3)
|
|
|
|
|
|
|
|
with Timing("running conv: "):
|
|
|
|
out = Tensor.conv2d(x, w)
|
|
|
|
|
|
|
|
with Timing("scheduling: "):
|
|
|
|
sched = out.lazydata.schedule()
|
|
|
|
|
|
|
|
for i,s in enumerate(sched):
|
|
|
|
if s[0].op in LoadOps: continue
|
2023-09-29 20:41:29 +08:00
|
|
|
ops = s[0].get_lazyops()
|
|
|
|
with Timing(f"linearize {i} with {len(ops):4d} ops: "):
|
2023-09-29 19:40:35 +08:00
|
|
|
l = Linearizer(s[0])
|
|
|
|
l.hand_coded_optimizations()
|
|
|
|
l.linearize()
|
|
|
|
|
2023-10-07 19:39:21 +08:00
|
|
|
def test_profile(self):
|
|
|
|
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
|
|
|
|
pr = start_profile()
|
|
|
|
out = Tensor.conv2d(x,w).realize()
|
|
|
|
stop_profile(pr, sort='time')
|
|
|
|
out.numpy()
|
|
|
|
|
2023-09-29 19:40:35 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main(verbosity=2)
|