tinygrad/extra/models/inception.py

343 lines
13 KiB
Python
Raw Normal View History

from tinygrad import Tensor
from tinygrad.nn import Conv2d, BatchNorm2d, Linear
from tinygrad.nn.state import load_state_dict, torch_load
from tinygrad.helpers import fetch
from typing import Optional, Dict
import numpy as np
from scipy import linalg
# Base Inception Model
class BasicConv2d:
def __init__(self, in_ch:int, out_ch:int, **kwargs):
self.conv = Conv2d(in_ch, out_ch, bias=False, **kwargs)
self.bn = BatchNorm2d(out_ch, eps=0.001)
def __call__(self, x:Tensor) -> Tensor:
return x.sequential([self.conv, self.bn, Tensor.relu])
class InceptionA:
def __init__(self, in_ch:int, pool_feat:int):
self.branch1x1 = BasicConv2d(in_ch, 64, kernel_size=1)
self.branch5x5_1 = BasicConv2d(in_ch, 48, kernel_size=1)
self.branch5x5_2 = BasicConv2d(48, 64, kernel_size=5, padding=2)
self.branch3x3dbl_1 = BasicConv2d(in_ch, 64, kernel_size=1)
self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=(3,3), padding=1)
self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=(3,3), padding=1)
self.branch_pool = BasicConv2d(in_ch, pool_feat, kernel_size=1)
def __call__(self, x:Tensor) -> Tensor:
outputs = [
self.branch1x1(x),
x.sequential([self.branch5x5_1, self.branch5x5_2]),
x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2, self.branch3x3dbl_3]),
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1)),
]
return Tensor.cat(*outputs, dim=1)
class InceptionB:
def __init__(self, in_ch:int):
self.branch3x3 = BasicConv2d(in_ch, 384, kernel_size=(3,3), stride=2)
self.branch3x3dbl_1 = BasicConv2d(in_ch, 64, kernel_size=1)
self.branch3x3dbl_2 = BasicConv2d(64, 96, kernel_size=(3,3), padding=1)
self.branch3x3dbl_3 = BasicConv2d(96, 96, kernel_size=(3,3), stride=2)
def __call__(self, x:Tensor) -> Tensor:
outputs = [
self.branch3x3(x),
x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2, self.branch3x3dbl_3]),
x.max_pool2d(kernel_size=(3,3), stride=2, dilation=1),
]
return Tensor.cat(*outputs, dim=1)
class InceptionC:
def __init__(self, in_ch, ch_7x7):
self.branch1x1 = BasicConv2d(in_ch, 192, kernel_size=1)
self.branch7x7_1 = BasicConv2d(in_ch, ch_7x7, kernel_size=1)
self.branch7x7_2 = BasicConv2d(ch_7x7, ch_7x7, kernel_size=(1, 7), padding=(0, 3))
self.branch7x7_3 = BasicConv2d(ch_7x7, 192, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7dbl_1 = BasicConv2d(in_ch, ch_7x7, kernel_size=1)
self.branch7x7dbl_2 = BasicConv2d(ch_7x7, ch_7x7, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7dbl_3 = BasicConv2d(ch_7x7, ch_7x7, kernel_size=(1, 7), padding=(0, 3))
self.branch7x7dbl_4 = BasicConv2d(ch_7x7, ch_7x7, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7dbl_5 = BasicConv2d(ch_7x7, 192, kernel_size=(1, 7), padding=(0, 3))
self.branch_pool = BasicConv2d(in_ch, 192, kernel_size=1)
def __call__(self, x:Tensor) -> Tensor:
outputs = [
self.branch1x1(x),
x.sequential([self.branch7x7_1, self.branch7x7_2, self.branch7x7_3]),
x.sequential([self.branch7x7dbl_1, self.branch7x7dbl_2, self.branch7x7dbl_3, self.branch7x7dbl_4, self.branch7x7dbl_5]),
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1)),
]
return Tensor.cat(*outputs, dim=1)
class InceptionD:
def __init__(self, in_ch:int):
self.branch3x3_1 = BasicConv2d(in_ch, 192, kernel_size=1)
self.branch3x3_2 = BasicConv2d(192, 320, kernel_size=(3,3), stride=2)
self.branch7x7x3_1 = BasicConv2d(in_ch, 192, kernel_size=1)
self.branch7x7x3_2 = BasicConv2d(192, 192, kernel_size=(1, 7), padding=(0, 3))
self.branch7x7x3_3 = BasicConv2d(192, 192, kernel_size=(7, 1), padding=(3, 0))
self.branch7x7x3_4 = BasicConv2d(192, 192, kernel_size=(3,3), stride=2)
def __call__(self, x:Tensor) -> Tensor:
outputs = [
x.sequential([self.branch3x3_1, self.branch3x3_2]),
x.sequential([self.branch7x7x3_1, self.branch7x7x3_2, self.branch7x7x3_3, self.branch7x7x3_4]),
x.max_pool2d(kernel_size=(3,3), stride=2, dilation=1),
]
return Tensor.cat(*outputs, dim=1)
class InceptionE:
def __init__(self, in_ch:int):
self.branch1x1 = BasicConv2d(in_ch, 320, kernel_size=1)
self.branch3x3_1 = BasicConv2d(in_ch, 384, kernel_size=1)
self.branch3x3_2a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
self.branch3x3_2b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
self.branch3x3dbl_1 = BasicConv2d(in_ch, 448, kernel_size=1)
self.branch3x3dbl_2 = BasicConv2d(448, 384, kernel_size=(3,3), padding=1)
self.branch3x3dbl_3a = BasicConv2d(384, 384, kernel_size=(1, 3), padding=(0, 1))
self.branch3x3dbl_3b = BasicConv2d(384, 384, kernel_size=(3, 1), padding=(1, 0))
self.branch_pool = BasicConv2d(in_ch, 192, kernel_size=1)
def __call__(self, x:Tensor) -> Tensor:
branch3x3 = self.branch3x3_1(x)
branch3x3dbl = x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2])
outputs = [
self.branch1x1(x),
Tensor.cat(self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), dim=1),
Tensor.cat(self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), dim=1),
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1)),
]
return Tensor.cat(*outputs, dim=1)
class InceptionAux:
def __init__(self, in_ch:int, num_classes:int):
self.conv0 = BasicConv2d(in_ch, 128, kernel_size=1)
self.conv1 = BasicConv2d(128, 768, kernel_size=5)
self.fc = Linear(768, num_classes)
def __call__(self, x:Tensor) -> Tensor:
x = x.avg_pool2d(kernel_size=5, stride=3, padding=1).sequential([self.conv0, self.conv1])
x = x.avg_pool2d(kernel_size=1, padding=1).reshape(x.shape[0],-1)
return self.fc(x)
class Inception3:
def __init__(self, num_classes:int=1008, cls_map:Optional[Dict]=None):
def get_cls(key1:str, key2:str, default):
return default if cls_map is None else cls_map.get(key1, cls_map.get(key2, default))
self.transform_input = False
self.Conv2d_1a_3x3 = BasicConv2d(3, 32, kernel_size=(3,3), stride=2)
self.Conv2d_2a_3x3 = BasicConv2d(32, 32, kernel_size=(3,3))
self.Conv2d_2b_3x3 = BasicConv2d(32, 64, kernel_size=(3,3), padding=1)
self.maxpool1 = lambda x: Tensor.max_pool2d(x, kernel_size=(3,3), stride=2, padding=1)
self.Conv2d_3b_1x1 = BasicConv2d(64, 80, kernel_size=1)
self.Conv2d_4a_3x3 = BasicConv2d(80, 192, kernel_size=(3,3))
self.maxpool2 = lambda x: Tensor.max_pool2d(x, kernel_size=(3,3), stride=2, padding=1)
self.Mixed_5b = get_cls("A1","A",InceptionA)(192, pool_feat=32)
self.Mixed_5c = get_cls("A2","A",InceptionA)(256, pool_feat=64)
self.Mixed_5d = get_cls("A3","A",InceptionA)(288, pool_feat=64)
self.Mixed_6a = get_cls("B1","B",InceptionB)(288)
self.Mixed_6b = get_cls("C1","C",InceptionC)(768, ch_7x7=128)
self.Mixed_6c = get_cls("C2","C",InceptionC)(768, ch_7x7=160)
self.Mixed_6d = get_cls("C3","C",InceptionC)(768, ch_7x7=160)
self.Mixed_6e = get_cls("C4","C",InceptionC)(768, ch_7x7=192)
self.Mixed_7a = get_cls("D1","D",InceptionD)(768)
self.Mixed_7b = get_cls("E1","E",InceptionE)(1280)
self.Mixed_7c = get_cls("E2","E",InceptionE)(2048)
self.avgpool = lambda x: Tensor.avg_pool2d(x, kernel_size=(8,8), padding=1)
self.fc = Linear(2048, num_classes)
def __call__(self, x:Tensor) -> Tensor:
return x.sequential([
self.Conv2d_1a_3x3,
self.Conv2d_2a_3x3,
self.Conv2d_2b_3x3,
self.maxpool1,
self.Conv2d_3b_1x1,
self.Conv2d_4a_3x3,
self.maxpool2,
self.Mixed_5b,
self.Mixed_5c,
self.Mixed_5d,
self.Mixed_6a,
self.Mixed_6b,
self.Mixed_6c,
self.Mixed_6d,
self.Mixed_6e,
self.Mixed_7a,
self.Mixed_7b,
self.Mixed_7c,
self.avgpool,
lambda y: y.reshape(x.shape[0],-1),
self.fc,
])
# FID Inception Variation
class FidInceptionA(InceptionA):
def __call__(self, x:Tensor) -> Tensor:
outputs = [
self.branch1x1(x),
x.sequential([self.branch5x5_1, self.branch5x5_2]),
x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2, self.branch3x3dbl_3]),
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1, count_include_pad=False))
]
return Tensor.cat(*outputs, dim=1)
class FidInceptionC(InceptionC):
def __call__(self, x:Tensor) -> Tensor:
outputs = [
self.branch1x1(x),
x.sequential([self.branch7x7_1, self.branch7x7_2, self.branch7x7_3]),
x.sequential([self.branch7x7dbl_1, self.branch7x7dbl_2, self.branch7x7dbl_3, self.branch7x7dbl_4, self.branch7x7dbl_5]),
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1, count_include_pad=False))
]
return Tensor.cat(*outputs, dim=1)
class FidInceptionE1(InceptionE):
def __call__(self, x:Tensor) -> Tensor:
branch3x3 = self.branch3x3_1(x)
branch3x3dbl = x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2])
outputs = [
self.branch1x1(x),
Tensor.cat(self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), dim=1),
Tensor.cat(self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), dim=1),
self.branch_pool(x.avg_pool2d(kernel_size=(3,3), stride=1, padding=1, count_include_pad=False)),
]
return Tensor.cat(*outputs, dim=1)
class FidInceptionE2(InceptionE):
def __call__(self, x:Tensor) -> Tensor:
branch3x3 = self.branch3x3_1(x)
branch3x3dbl = x.sequential([self.branch3x3dbl_1, self.branch3x3dbl_2])
outputs = [
self.branch1x1(x),
Tensor.cat(self.branch3x3_2a(branch3x3), self.branch3x3_2b(branch3x3), dim=1),
Tensor.cat(self.branch3x3dbl_3a(branch3x3dbl), self.branch3x3dbl_3b(branch3x3dbl), dim=1),
self.branch_pool(x.max_pool2d(kernel_size=(3,3), stride=1, padding=1)),
]
return Tensor.cat(*outputs, dim=1)
class FidInceptionV3:
m1: Optional[np.ndarray] = None
s1: Optional[np.ndarray] = None
def __init__(self):
inception = Inception3(cls_map={
"A": FidInceptionA,
"C": FidInceptionC,
"E1": FidInceptionE1,
"E2": FidInceptionE2,
})
self.Conv2d_1a_3x3 = inception.Conv2d_1a_3x3
self.Conv2d_2a_3x3 = inception.Conv2d_2a_3x3
self.Conv2d_2b_3x3 = inception.Conv2d_2b_3x3
self.Conv2d_3b_1x1 = inception.Conv2d_3b_1x1
self.Conv2d_4a_3x3 = inception.Conv2d_4a_3x3
self.Mixed_5b = inception.Mixed_5b
self.Mixed_5c = inception.Mixed_5c
self.Mixed_5d = inception.Mixed_5d
self.Mixed_6a = inception.Mixed_6a
self.Mixed_6b = inception.Mixed_6b
self.Mixed_6c = inception.Mixed_6c
self.Mixed_6d = inception.Mixed_6d
self.Mixed_6e = inception.Mixed_6e
self.Mixed_7a = inception.Mixed_7a
self.Mixed_7b = inception.Mixed_7b
self.Mixed_7c = inception.Mixed_7c
def load_from_pretrained(self):
state_dict = torch_load(str(fetch("https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth", "pt_inception-2015-12-05-6726825d.pth")))
for k,v in state_dict.items():
if k.endswith(".num_batches_tracked"):
state_dict[k] = v.reshape(1)
load_state_dict(self, state_dict)
return self
def __call__(self, x:Tensor) -> Tensor:
x = x.interpolate((299,299), mode="linear")
x = (x * 2) - 1
x = x.sequential([
self.Conv2d_1a_3x3,
self.Conv2d_2a_3x3,
self.Conv2d_2b_3x3,
lambda x: Tensor.max_pool2d(x, kernel_size=(3,3), stride=2, dilation=1),
self.Conv2d_3b_1x1,
self.Conv2d_4a_3x3,
lambda x: Tensor.max_pool2d(x, kernel_size=(3,3), stride=2, dilation=1),
self.Mixed_5b,
self.Mixed_5c,
self.Mixed_5d,
self.Mixed_6a,
self.Mixed_6b,
self.Mixed_6c,
self.Mixed_6d,
self.Mixed_6e,
self.Mixed_7a,
self.Mixed_7b,
self.Mixed_7c,
lambda x: Tensor.avg_pool2d(x, kernel_size=(8,8)),
])
return x
def compute_score(self, inception_activations:Tensor, val_stats_path:str) -> float:
if self.m1 is None and self.s1 is None:
with np.load(val_stats_path) as f:
self.m1, self.s1 = f['mu'][:], f['sigma'][:]
assert self.m1 is not None and self.s1 is not None
m2 = inception_activations.mean(axis=0).numpy()
s2 = np.cov(inception_activations.numpy(), rowvar=False)
return calculate_frechet_distance(self.m1, self.s1, m2, s2)
def calculate_frechet_distance(mu1:np.ndarray, sigma1:np.ndarray, mu2:np.ndarray, sigma2:np.ndarray, eps:float=1e-6) -> float:
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape and sigma1.shape == sigma2.shape
diff = mu1 - mu2
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError(f"Imaginary component {m}")
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2*tr_covmean