tinygrad/test/test_mnist.py

108 lines
3.4 KiB
Python
Raw Normal View History

2020-10-19 01:16:01 +08:00
#!/usr/bin/env python
import unittest
2020-10-19 01:16:01 +08:00
import numpy as np
2022-07-18 03:55:26 +08:00
from tinygrad.tensor import Tensor, Device
from tinygrad.nn import optim
from extra.training import train, evaluate
2021-10-31 10:55:50 +08:00
from datasets import fetch_mnist
2020-10-19 01:16:01 +08:00
# load the mnist dataset
2020-10-19 04:30:25 +08:00
X_train, Y_train, X_test, Y_test = fetch_mnist()
2020-10-19 01:16:01 +08:00
2020-10-19 05:55:20 +08:00
# create a model
2020-10-19 04:08:14 +08:00
class TinyBobNet:
def __init__(self):
self.l1 = Tensor.scaled_uniform(784, 128)
self.l2 = Tensor.scaled_uniform(128, 10)
2020-10-19 04:08:14 +08:00
2020-10-27 23:53:35 +08:00
def parameters(self):
return optim.get_parameters(self)
2020-10-27 23:53:35 +08:00
2020-10-19 04:08:14 +08:00
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).log_softmax()
2020-10-19 04:08:14 +08:00
# create a model with a conv layer
class TinyConvNet:
def __init__(self):
2020-10-26 04:48:44 +08:00
# https://keras.io/examples/vision/mnist_convnet/
conv = 3
#inter_chan, out_chan = 32, 64
inter_chan, out_chan = 8, 16 # for speed
self.c1 = Tensor.scaled_uniform(inter_chan,1,conv,conv)
self.c2 = Tensor.scaled_uniform(out_chan,inter_chan,conv,conv)
self.l1 = Tensor.scaled_uniform(out_chan*5*5, 10)
2020-10-27 23:53:35 +08:00
def parameters(self):
return optim.get_parameters(self)
2020-10-27 23:53:35 +08:00
def forward(self, x):
2020-11-08 01:17:57 +08:00
x = x.reshape(shape=(-1, 1, 28, 28)) # hacks
x = x.conv2d(self.c1).relu().max_pool2d()
x = x.conv2d(self.c2).relu().max_pool2d()
x = x.reshape(shape=[x.shape[0], -1])
return x.dot(self.l1).log_softmax()
2020-10-23 21:11:38 +08:00
class TestMNIST(unittest.TestCase):
2022-06-06 03:40:12 +08:00
def test_sgd_onestep(self):
2022-06-06 03:13:05 +08:00
np.random.seed(1337)
2022-06-06 03:40:12 +08:00
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=1)
2022-07-03 06:47:10 +08:00
for p in model.parameters(): p.realize()
2022-06-07 00:25:31 +08:00
2022-06-07 00:45:37 +08:00
def test_sgd_threestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
2022-07-18 06:38:43 +08:00
train(model, X_train, Y_train, optimizer, BS=69, steps=3)
def test_sgd_sixstep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=6, noloss=True)
2022-06-07 00:45:37 +08:00
2022-06-07 00:25:31 +08:00
def test_adam_onestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=1)
2022-07-03 06:47:10 +08:00
for p in model.parameters(): p.realize()
2020-11-08 01:17:57 +08:00
2022-06-07 00:38:28 +08:00
def test_adam_threestep(self):
np.random.seed(1337)
model = TinyBobNet()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train(model, X_train, Y_train, optimizer, BS=69, steps=3)
2022-06-06 07:31:20 +08:00
def test_conv_onestep(self):
np.random.seed(1337)
model = TinyConvNet()
optimizer = optim.SGD(model.parameters(), lr=0.001)
2022-07-16 23:32:42 +08:00
train(model, X_train, Y_train, optimizer, BS=69, steps=1, noloss=True)
for p in model.parameters(): p.realize()
2022-06-06 07:31:20 +08:00
2020-10-23 21:33:18 +08:00
def test_conv(self):
2020-10-23 21:11:38 +08:00
np.random.seed(1337)
2020-10-23 17:53:01 +08:00
model = TinyConvNet()
2020-10-27 23:53:35 +08:00
optimizer = optim.Adam(model.parameters(), lr=0.001)
2022-07-04 06:18:00 +08:00
train(model, X_train, Y_train, optimizer, steps=100)
2022-09-07 22:52:05 +08:00
assert evaluate(model, X_test, Y_test) > 0.94 # torch gets 0.9415 sometimes
2020-10-23 21:33:18 +08:00
def test_sgd(self):
2020-10-23 21:11:38 +08:00
np.random.seed(1337)
2020-10-23 17:53:01 +08:00
model = TinyBobNet()
2020-10-27 23:53:35 +08:00
optimizer = optim.SGD(model.parameters(), lr=0.001)
2022-07-04 06:18:00 +08:00
train(model, X_train, Y_train, optimizer, steps=600)
2023-02-20 05:05:37 +08:00
assert evaluate(model, X_test, Y_test) > 0.94 # CPU gets 0.9494 sometimes
2020-10-23 21:33:18 +08:00
def test_rmsprop(self):
2020-10-23 21:11:38 +08:00
np.random.seed(1337)
2020-10-23 20:46:45 +08:00
model = TinyBobNet()
2020-10-27 23:53:35 +08:00
optimizer = optim.RMSprop(model.parameters(), lr=0.0002)
2022-07-04 06:18:00 +08:00
train(model, X_train, Y_train, optimizer, steps=400)
assert evaluate(model, X_test, Y_test) > 0.95
2020-10-22 02:21:44 +08:00
if __name__ == '__main__':
unittest.main()