2023-03-11 08:56:07 +08:00
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from tinygrad.helpers import getenv
|
|
|
|
from tinygrad.lazy import Device
|
|
|
|
from tinygrad.tensor import Tensor, dtypes
|
|
|
|
|
|
|
|
# for GPU, cl_khr_fp16 isn't supported
|
|
|
|
# for LLVM, it segfaults because it can't link to the casting function
|
|
|
|
@unittest.skipIf(getenv("CI", "") != "" and Device.DEFAULT in ["GPU", "LLVM"], "float16 broken in some CI backends")
|
|
|
|
class TestDtype(unittest.TestCase):
|
|
|
|
def test_half_to_np(self):
|
|
|
|
a = Tensor([1,2,3,4], dtype=dtypes.float16)
|
|
|
|
print(a)
|
|
|
|
na = a.numpy()
|
|
|
|
print(na, na.dtype, a.lazydata.realized)
|
|
|
|
assert na.dtype == np.float16
|
2023-03-12 13:51:22 +08:00
|
|
|
np.testing.assert_allclose(na, [1,2,3,4])
|
2023-03-11 08:56:07 +08:00
|
|
|
|
|
|
|
def test_half_add(self):
|
|
|
|
a = Tensor([1,2,3,4], dtype=dtypes.float16)
|
|
|
|
b = Tensor([1,2,3,4], dtype=dtypes.float16)
|
|
|
|
c = a+b
|
|
|
|
print(c.numpy())
|
|
|
|
assert c.dtype == dtypes.float16
|
2023-03-12 13:51:22 +08:00
|
|
|
np.testing.assert_allclose(c.numpy(), [2,4,6,8])
|
2023-03-11 08:56:07 +08:00
|
|
|
|
|
|
|
def test_upcast_float(self):
|
|
|
|
# NOTE: there's no downcasting support
|
|
|
|
a = Tensor([1,2,3,4], dtype=dtypes.float16).float()
|
|
|
|
print(a)
|
|
|
|
na = a.numpy()
|
|
|
|
print(na, na.dtype)
|
|
|
|
assert na.dtype == np.float32
|
2023-03-12 13:51:22 +08:00
|
|
|
np.testing.assert_allclose(na, [1,2,3,4])
|
2023-03-11 08:56:07 +08:00
|
|
|
|
|
|
|
def test_half_add_upcast(self):
|
|
|
|
a = Tensor([1,2,3,4], dtype=dtypes.float16)
|
|
|
|
b = Tensor([1,2,3,4], dtype=dtypes.float32)
|
|
|
|
c = a+b
|
|
|
|
print(c.numpy())
|
|
|
|
assert c.dtype == dtypes.float32
|
2023-03-12 13:51:22 +08:00
|
|
|
np.testing.assert_allclose(c.numpy(), [2,4,6,8])
|
2023-03-11 08:56:07 +08:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|