tinygrad/extra/training.py

54 lines
2.0 KiB
Python
Raw Normal View History

import numpy as np
from tqdm import trange
from tinygrad.tensor import Tensor
from tinygrad.helpers import CI
def train(model, X_train, Y_train, optim, steps, BS=128, lossfn=lambda out,y: out.sparse_categorical_crossentropy(y),
2022-07-16 23:32:42 +08:00
transform=lambda x: x, target_transform=lambda x: x, noloss=False):
with Tensor.train():
losses, accuracies = [], []
for i in (t := trange(steps, disable=CI)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(transform(X_train[samp]), requires_grad=False)
y = Tensor(target_transform(Y_train[samp]))
# network
out = model.forward(x) if hasattr(model, 'forward') else model(x)
loss = lossfn(out, y)
optim.zero_grad()
loss.backward()
if noloss: del loss
optim.step()
# printing
if not noloss:
cat = out.argmax(axis=-1)
accuracy = (cat == y).mean().numpy()
loss = loss.detach().numpy()
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
return [losses, accuracies]
def evaluate(model, X_test, Y_test, num_classes=None, BS=128, return_predict=False, transform=lambda x: x,
target_transform=lambda y: y):
2020-12-29 11:45:46 +08:00
Tensor.training = False
def numpy_eval(Y_test, num_classes):
Y_test_preds_out = np.zeros(list(Y_test.shape)+[num_classes])
for i in trange((len(Y_test)-1)//BS+1, disable=CI):
x = Tensor(transform(X_test[i*BS:(i+1)*BS]))
2023-01-31 05:13:55 +08:00
out = model.forward(x) if hasattr(model, 'forward') else model(x)
Y_test_preds_out[i*BS:(i+1)*BS] = out.numpy()
Y_test_preds = np.argmax(Y_test_preds_out, axis=-1)
Y_test = target_transform(Y_test)
return (Y_test == Y_test_preds).mean(), Y_test_preds
if num_classes is None: num_classes = Y_test.max().astype(int)+1
acc, Y_test_pred = numpy_eval(Y_test, num_classes)
print("test set accuracy is %f" % acc)
return (acc, Y_test_pred) if return_predict else acc
2020-12-29 11:45:46 +08:00