tinygrad/test/test_conv_shapetracker.py

28 lines
855 B
Python
Raw Normal View History

2023-02-27 23:54:47 +08:00
#!/usr/bin/env python
import unittest
from tinygrad.tensor import Tensor, Device
from tinygrad.nn import Conv2d
from tinygrad.jit import CacheCollector
CI < 5 minutes (#1252) * models matrix * fix typo and install gpu deps * install llvm deps if needed * fix * testops with cuda * remove pip cache since not work * cuda env * install cuda deps * maybe it will work now * i can't read * all tests in matrix * trim down more * opencl stuff in matrix * opencl pip cache * test split * change cuda test exclusion * test * fix cuda maybe * add models * add more n=auto * third thing * fix bug * cache pip more * change name * update tests * try again cause why not * balance * try again... * try apt cache for cuda * try on gpu: * try cuda again * update packages step * replace libz-dev with zlib1g-dev * only cache cuda * why error * fix gpuocelot bug * apt cache err * apt cache to slow? * opt and image in single runner * add a couple n=autos * remove test matrix * try cuda apt cache again * libz-dev -> zlib1g-dev * remove -s since not supported by xdist * the cache takes too long and doesn't work * combine webgpu and metal tests * combine imagenet to c and cpu tests * torch tests with linters * torch back by itself * small windows clang test with torch tests * fix a goofy windows bug * im dumb * bro * clang with linters * fix pylint error * linter not work on windows * try with clang again * clang and imagenet? * install deps * fix * fix quote * clang by itself (windows too slow) * env vars for imagenet * cache pip for metal and webgpu tests * try torch with metal and webgpu * doesn't work, too long * remove -v * try -n=logical * don't use logical * revert accidental thing * remove some prints unless CI * fix print unless CI * ignore speed tests for slow tests * clang windows in matrix (ubuntu being tested in imagenet->c test) * try manual pip cache * fix windows pip cache path * all manual pip cache * fix pip cache dir for macos * print_ci function in helpers * CI as variable, no print_ci * missed one * cuda tests with docker image * remove setup-python action for cuda * python->python3? * remove -s -v * try fix pip cache * maybe fix * try to fix pip cache * is this the path? * maybe cache pip * try again * create wheels dir * ? * cuda pip deps in dockerfile * disable pip cache for clang * image from ghcr instead of docker hub * why is clang like this * fast deps * try use different caches * remove the fast thing * try with lighter image * remove setup python for cuda * small docker and cuda fast deps * ignore a few more tests * cool docker thing (maybe) * oops * quotes * fix docker command * fix bug * ignore train efficientnet test * remove dockerfile (docker stuff takes too long) * remove docker stuff and normal cuda * oops * ignore the tests for cuda * does this work * ignore test_train on slow backends * add space * llvm ignore same tests as cuda * nvm * ignore lr scheduler tests * get some stats * fix ignore bug * remove extra ' * remove and * ignore test for llvm * change ignored tests and durationon all backends * fix * and -> or * ignore some more cuda tests * finally? * does this fix it * remove durations=0 * add some more tests to llvm * make last pytest more readable * fix * don't train efficientnet on cpu * try w/out pip cache * pip cache seems to be generally better * pytest file markers * try apt fast for cuda * use quick install for apt-fast * apt-fast not worth * apt-get to apt * fix typo * suppress warnings * register markers * disable debug on fuzz tests * change marker names * apt update and apt install in one command * update marker names in test.yml * webgpu pytest marker
2023-07-24 04:00:56 +08:00
import pytest
pytestmark = pytest.mark.webgpu
2023-02-27 23:54:47 +08:00
#@unittest.skipUnless(Device.DEFAULT == "GPU", "Only GPU supports cache")
@unittest.skip("with JIT changes, you only get the raw buffer")
2023-02-27 23:54:47 +08:00
class TestConvShapetracker(unittest.TestCase):
def test_conv_3x3_one_view(self):
inp = Tensor.randn(1,16,10,10).realize()
conv = Conv2d(16, 32, (3,3))
conv(inp).realize()
CacheCollector.start()
2023-02-27 23:54:47 +08:00
conv(inp).realize()
test = CacheCollector.finish()
assert len(test) == 1, f"conv should only have one kernel {[x[0].name for x in test]}"
print(test[0][0].prg)
2023-02-27 23:54:47 +08:00
for arg in test[0][1]:
print(arg.st)
assert len(arg.st.views) == 1
if __name__ == '__main__':
unittest.main()