2020-10-19 01:16:01 +08:00
|
|
|
#!/usr/bin/env python
|
2020-10-22 00:12:19 +08:00
|
|
|
import os
|
2020-10-22 00:30:08 +08:00
|
|
|
import unittest
|
2020-10-19 01:16:01 +08:00
|
|
|
import numpy as np
|
2020-10-19 03:48:17 +08:00
|
|
|
from tinygrad.tensor import Tensor
|
2020-10-19 05:36:29 +08:00
|
|
|
from tinygrad.utils import layer_init_uniform, fetch_mnist
|
2020-10-23 20:46:45 +08:00
|
|
|
import tinygrad.optim as optim
|
2020-10-19 01:16:01 +08:00
|
|
|
from tqdm import trange
|
|
|
|
|
|
|
|
# load the mnist dataset
|
2020-10-19 04:30:25 +08:00
|
|
|
X_train, Y_train, X_test, Y_test = fetch_mnist()
|
2020-10-19 01:16:01 +08:00
|
|
|
|
2020-10-19 05:55:20 +08:00
|
|
|
# create a model
|
2020-10-19 04:08:14 +08:00
|
|
|
class TinyBobNet:
|
|
|
|
def __init__(self):
|
2020-10-19 05:36:29 +08:00
|
|
|
self.l1 = Tensor(layer_init_uniform(784, 128))
|
|
|
|
self.l2 = Tensor(layer_init_uniform(128, 10))
|
2020-10-19 04:08:14 +08:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
|
|
|
|
|
2020-10-22 00:12:19 +08:00
|
|
|
# create a model with a conv layer
|
|
|
|
class TinyConvNet:
|
|
|
|
def __init__(self):
|
2020-10-26 04:48:44 +08:00
|
|
|
# https://keras.io/examples/vision/mnist_convnet/
|
|
|
|
conv = 3
|
|
|
|
#inter_chan, out_chan = 32, 64
|
|
|
|
inter_chan, out_chan = 8, 16 # for speed
|
|
|
|
self.c1 = Tensor(layer_init_uniform(inter_chan,1,conv,conv))
|
|
|
|
self.c2 = Tensor(layer_init_uniform(out_chan,inter_chan,conv,conv))
|
|
|
|
self.l1 = Tensor(layer_init_uniform(out_chan*5*5, 10))
|
2020-10-22 00:12:19 +08:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x.data = x.data.reshape((-1, 1, 28, 28)) # hacks
|
2020-10-26 08:16:47 +08:00
|
|
|
x = x.conv2d(self.c1).relu().max_pool2d()
|
|
|
|
x = x.conv2d(self.c2).relu().max_pool2d()
|
2020-10-23 12:49:14 +08:00
|
|
|
x = x.reshape(Tensor(np.array((x.shape[0], -1))))
|
2020-10-26 04:48:44 +08:00
|
|
|
return x.dot(self.l1).logsoftmax()
|
2020-10-22 00:12:19 +08:00
|
|
|
|
2020-10-23 21:11:38 +08:00
|
|
|
def train(model, optim, steps, BS=128):
|
|
|
|
losses, accuracies = [], []
|
2020-10-26 07:40:37 +08:00
|
|
|
for i in (t := trange(steps, disable=os.getenv('CI') is not None)):
|
2020-10-23 21:11:38 +08:00
|
|
|
samp = np.random.randint(0, X_train.shape[0], size=(BS))
|
|
|
|
|
|
|
|
x = Tensor(X_train[samp].reshape((-1, 28*28)).astype(np.float32))
|
|
|
|
Y = Y_train[samp]
|
|
|
|
y = np.zeros((len(samp),10), np.float32)
|
|
|
|
# correct loss for NLL, torch NLL loss returns one per row
|
|
|
|
y[range(y.shape[0]),Y] = -10.0
|
|
|
|
y = Tensor(y)
|
|
|
|
|
|
|
|
# network
|
|
|
|
out = model.forward(x)
|
2020-10-19 01:16:01 +08:00
|
|
|
|
2020-10-23 21:11:38 +08:00
|
|
|
# NLL loss function
|
|
|
|
loss = out.mul(y).mean()
|
|
|
|
loss.backward()
|
|
|
|
optim.step()
|
|
|
|
|
|
|
|
cat = np.argmax(out.data, axis=1)
|
|
|
|
accuracy = (cat == Y).mean()
|
|
|
|
|
|
|
|
# printing
|
|
|
|
loss = loss.data
|
|
|
|
losses.append(loss)
|
|
|
|
accuracies.append(accuracy)
|
|
|
|
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
|
2020-10-19 01:16:01 +08:00
|
|
|
|
2020-10-23 21:11:38 +08:00
|
|
|
def evaluate(model):
|
|
|
|
def numpy_eval():
|
|
|
|
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28)).astype(np.float32)))
|
|
|
|
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
|
|
|
|
return (Y_test == Y_test_preds).mean()
|
2020-10-19 03:48:17 +08:00
|
|
|
|
2020-10-23 21:11:38 +08:00
|
|
|
accuracy = numpy_eval()
|
|
|
|
print("test set accuracy is %f" % accuracy)
|
|
|
|
assert accuracy > 0.95
|
2020-10-22 00:30:08 +08:00
|
|
|
|
2020-10-23 21:11:38 +08:00
|
|
|
class TestMNIST(unittest.TestCase):
|
2020-10-23 21:33:18 +08:00
|
|
|
def test_conv(self):
|
2020-10-23 21:11:38 +08:00
|
|
|
np.random.seed(1337)
|
2020-10-23 17:53:01 +08:00
|
|
|
model = TinyConvNet()
|
2020-10-26 04:48:44 +08:00
|
|
|
optimizer = optim.Adam([model.c1, model.c2, model.l1], lr=0.001)
|
2020-10-23 21:11:38 +08:00
|
|
|
train(model, optimizer, steps=400)
|
2020-10-23 17:53:01 +08:00
|
|
|
evaluate(model)
|
|
|
|
|
2020-10-23 21:33:18 +08:00
|
|
|
def test_sgd(self):
|
2020-10-23 21:11:38 +08:00
|
|
|
np.random.seed(1337)
|
2020-10-23 17:53:01 +08:00
|
|
|
model = TinyBobNet()
|
2020-10-23 20:46:45 +08:00
|
|
|
optimizer = optim.SGD([model.l1, model.l2], lr=0.001)
|
2020-10-23 21:11:38 +08:00
|
|
|
train(model, optimizer, steps=1000)
|
2020-10-23 17:53:01 +08:00
|
|
|
evaluate(model)
|
|
|
|
|
2020-10-23 21:33:18 +08:00
|
|
|
def test_rmsprop(self):
|
2020-10-23 21:11:38 +08:00
|
|
|
np.random.seed(1337)
|
2020-10-23 20:46:45 +08:00
|
|
|
model = TinyBobNet()
|
2020-10-23 21:22:32 +08:00
|
|
|
optimizer = optim.RMSprop([model.l1, model.l2], lr=0.0002)
|
2020-10-23 21:11:38 +08:00
|
|
|
train(model, optimizer, steps=1000)
|
2020-10-23 17:53:01 +08:00
|
|
|
evaluate(model)
|
2020-10-22 02:21:44 +08:00
|
|
|
|
2020-10-22 00:30:08 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|
2020-10-23 21:11:38 +08:00
|
|
|
|