tinygrad/test/test_speed_v_torch.py

146 lines
4.6 KiB
Python
Raw Normal View History

2022-10-29 02:22:15 +08:00
import os
2022-10-11 07:06:00 +08:00
import unittest
import torch
2022-10-30 04:42:33 +08:00
torch.set_num_threads(1)
2022-10-11 07:06:00 +08:00
import time
import numpy as np
from tinygrad.tensor import Tensor
from tinygrad.nn import Conv2d
2022-11-08 13:12:08 +08:00
from tinygrad.llops.ops_gpu import CL
2022-11-08 13:19:08 +08:00
try:
from termcolor import colored
except ImportError:
colored = None
2022-10-11 07:06:00 +08:00
2022-11-08 13:12:08 +08:00
IN_CHANS = [int(x) for x in os.getenv("IN_CHANS", "4,16,64").split(",")]
def colorize_float(x):
ret = f"{x:7.2f}x"
2022-11-08 13:19:08 +08:00
if colored:
if x < 0.8:
return colored(ret, 'green')
elif x > 1.5:
return colored(ret, 'red')
else:
return colored(ret, 'yellow')
2022-11-08 13:12:08 +08:00
else:
2022-11-08 13:19:08 +08:00
return ret
2022-11-08 13:12:08 +08:00
CNT = 8
def test_speed(f1, *args):
ets = []
ret = None
for _ in range(CNT):
del ret
st = time.monotonic()
ret = f1(*args)
if ret.device in ["GPU", "OPENCL"]:
CL.cl_queue.finish()
et = (time.monotonic() - st) * 1000
ets.append(et)
return ret.numpy(), np.min(ets)
def test_generic_square(name, N, f1, f2):
torch.manual_seed(0)
torch_a = torch.rand(N, N) - 0.5
torch_b = torch.rand(N, N) - 0.5
tiny_a = Tensor(torch_a.cpu().numpy())
tiny_b = Tensor(torch_b.cpu().numpy())
with torch.no_grad():
val_torch, et_torch = test_speed(f1, torch_a, torch_b)
val_tinygrad, et_tinygrad = test_speed(lambda *args: f2(*args).realize(), tiny_a, tiny_b)
print(f"{name:30s} {N:4d}x{N:4d} {et_torch:7.2f} ms in torch, {et_tinygrad:7.2f} ms in tinygrad, {colorize_float(et_tinygrad/et_torch)} slower", val_torch.sum(), val_tinygrad.sum())
np.testing.assert_allclose(val_tinygrad, val_torch, atol=1e-4, rtol=1e-3)
2022-10-29 02:22:15 +08:00
2022-10-30 04:42:33 +08:00
class TestSpeed(unittest.TestCase):
2022-11-08 13:12:08 +08:00
def test_sum(self):
def f(a, b): return a.sum()
test_generic_square('sum', 4096, f, f)
def test_permute(self):
# this is a 64MB tensor, M1 L1 cache is 128kB
# to fit easily in L1, rotations should be 128x128 chunks. 128x128 is also the AMX size
def f1(a, b): return a.permute(1,0).contiguous()
# NOTE: this isn't being constant folded
def f2(a, b): return a.permute(1,0) + 0
test_generic_square('permute', 4096, f1, f2)
def test_neg(self):
def f(a, b): return -a
test_generic_square('neg', 4096, f, f)
def test_exp(self):
def f(a, b): return a.exp()
test_generic_square('exp', 2048, f, f)
def test_relu(self):
def f(a, b): return a.relu()
test_generic_square('relu', 4096, f, f)
def test_max(self):
def f(a, b): return a.max()
test_generic_square('max', 4096, f, f)
def test_mul_sum(self):
def f(a, b): return (a*b).sum()
test_generic_square('mul_sum', 4096, f, f)
def test_add(self):
for N in [1024, 4096]:
def f(a, b): return a + b
test_generic_square('add', N, f, f)
def test_add_sq(self):
def f(a, b): return a*a + b*b
test_generic_square('add_sq', 4096, f, f)
2022-10-30 04:42:33 +08:00
def test_gemm(self):
2022-11-08 13:12:08 +08:00
def f(a, b): return a @ b
test_generic_square('gemm', 512, f, f)
def test_gemm_unrolled(self):
N = 512
def f1(a, b): return a@b.T
def f2(a, b): return (a.reshape(N, 1, N).expand(N, N, N) * b.reshape(1, N, N).expand(N, N, N)).sum(axis=2)
test_generic_square('gemm_unrolled', N, f1, f2)
def test_gemm_unrolled_permute_r(self):
N = 512
def f1(a, b): return a@b
def f2(a, b): return (a.reshape(N, 1, N).expand(N, N, N) * b.permute(1,0).reshape(1, N, N).expand(N, N, N)).sum(axis=2)
test_generic_square('gemm_unrolled_permute_r', N, f1, f2)
def test_gemm_unrolled_permute_lr(self):
N = 512
def f1(a, b): return a.T@b
def f2(a, b): return (a.permute(1,0).reshape(N, 1, N).expand(N, N, N) * b.permute(1,0).reshape(1, N, N).expand(N, N, N)).sum(axis=2)
test_generic_square('gemm_unrolled_permute_lr', N, f1, f2)
2022-10-30 04:42:33 +08:00
2022-10-11 07:06:00 +08:00
def test_conv2d(self):
torch.manual_seed(0)
for bs in [32]:
2022-10-29 02:22:15 +08:00
for in_chans in IN_CHANS:
2022-11-08 13:12:08 +08:00
for out_chans in [32]:
img_size = 34
torch_dat = torch.rand(bs, in_chans, img_size, img_size)
torch_conv = torch.nn.Conv2d(in_chans, out_chans, 3, bias=None)
tiny_dat = Tensor(torch_dat.cpu().numpy())
tiny_conv = Conv2d(in_chans, out_chans, 3, bias=None)
tiny_conv.weight = Tensor(torch_conv.weight.detach().cpu().numpy())
def f1(): return torch_conv(torch_dat)
def f2(): return tiny_conv(tiny_dat).realize()
2022-10-11 07:06:00 +08:00
with torch.no_grad():
2022-11-08 13:12:08 +08:00
val_torch, et_torch = test_speed(f1)
val_tinygrad, et_tinygrad = test_speed(f2)
print(f"bs:{bs:3d} chans:{in_chans:3d} -> {out_chans:3d} {et_torch:7.2f} ms in torch, {et_tinygrad:7.2f} ms in tinygrad, {colorize_float(et_tinygrad/et_torch)} slower", val_torch.sum(), val_tinygrad.sum())
np.testing.assert_allclose(val_tinygrad, val_torch, atol=1e-4)
2022-10-11 07:06:00 +08:00
if __name__ == '__main__':
unittest.main()