tinygrad/README.md

223 lines
6.8 KiB
Markdown
Raw Normal View History

2020-10-27 01:12:49 +08:00
<p align="center">
2020-10-27 23:13:15 +08:00
<img src="https://raw.githubusercontent.com/geohot/tinygrad/master/docs/logo.png">
2020-10-27 01:12:49 +08:00
</p>
--------------------------------------------------------------------
2020-10-19 02:27:37 +08:00
2020-10-19 04:41:51 +08:00
![Unit Tests](https://github.com/geohot/tinygrad/workflows/Unit%20Tests/badge.svg)
2023-01-29 03:42:11 +08:00
[![tinygrad discord](https://discordapp.com/api/guilds/1068976834382925865/widget.png?style=banner2)](https://discord.gg/ZjZadyC7PK)
2023-01-29 03:36:15 +08:00
For something in between a [pytorch](https://github.com/pytorch/pytorch) and a [karpathy/micrograd](https://github.com/karpathy/micrograd)
2020-10-18 13:57:01 +08:00
2021-10-31 07:51:25 +08:00
This may not be the best deep learning framework, but it is a deep learning framework.
2021-10-31 10:48:24 +08:00
The sub 1000 line core of it is in `tinygrad/`
2020-10-19 04:08:14 +08:00
2021-10-31 10:40:44 +08:00
Due to its extreme simplicity, it aims to be the easiest framework to add new accelerators to, with support for both inference and training. Support the simple basic ops, and you get SOTA [vision](https://arxiv.org/abs/1905.11946) `models/efficientnet.py` and [language](https://arxiv.org/abs/1706.03762) `models/transformer.py` models.
2020-10-19 03:48:17 +08:00
2021-10-31 10:40:44 +08:00
We are working on support for the Apple Neural Engine and the Google TPU in the `accel/` folder. Eventually, [we will build custom hardware](https://geohot.github.io/blog/jekyll/update/2021/06/13/a-breakdown-of-ai-chip-companies.html) for tinygrad, and it will be blindingly fast. Now, it is slow.
2020-11-08 10:28:39 +08:00
This project is maintained by [tiny corp](https://tinygrad.org/).
2020-10-27 23:10:51 +08:00
### Installation
```bash
2021-10-31 07:51:25 +08:00
git clone https://github.com/geohot/tinygrad.git
cd tinygrad
python3 -m pip install -e .
2020-10-27 23:10:51 +08:00
```
2022-11-09 11:13:11 +08:00
### Contributing
There's a lot of interest in tinygrad lately. Here's some guidelines for contributing:
* Bugfixes are the best and always welcome! Like [this one](https://github.com/geohot/tinygrad/pull/421/files).
* If you don't understand the code you are changing, don't change it!
* All code golf PRs will be closed, but [conceptual cleanups](https://github.com/geohot/tinygrad/pull/372/files) are great.
2022-11-09 11:14:37 +08:00
* Features are welcome. Though if you are adding a feature, you need to include tests.
* Improving test coverage is great, with reliable non brittle tests.
2022-11-09 11:13:11 +08:00
2020-10-19 03:48:17 +08:00
### Example
```python
from tinygrad.tensor import Tensor
x = Tensor.eye(3, requires_grad=True)
y = Tensor([[2.0,0,-2.0]], requires_grad=True)
2020-10-27 23:57:17 +08:00
z = y.matmul(x).sum()
2020-10-19 03:48:17 +08:00
z.backward()
print(x.grad.numpy()) # dz/dx
print(y.grad.numpy()) # dz/dy
2020-10-19 03:48:17 +08:00
```
### Same example in torch
```python
import torch
x = torch.eye(3, requires_grad=True)
y = torch.tensor([[2.0,0,-2.0]], requires_grad=True)
z = y.matmul(x).sum()
z.backward()
print(x.grad) # dz/dx
print(y.grad) # dz/dy
```
2020-10-18 13:57:01 +08:00
2023-03-07 00:25:13 +08:00
## Is tinygrad fast?
Try a matmul. See how, despite the style, it is fused into one kernel with the power of laziness.
2023-03-07 00:25:13 +08:00
```python
DEBUG=3 OPTLOCAL=1 python3 -c "from tinygrad.tensor import Tensor;
2023-03-07 00:25:13 +08:00
N = 1024; a, b = Tensor.randn(N, N), Tensor.randn(N, N);
c = (a.reshape(N, 1, N) * b.permute(1,0).reshape(1, N, N)).sum(axis=2);
print((c.numpy() - (a.numpy() @ b.numpy())).mean())"
```
Change to `DEBUG=4` to see the generated code.
2020-12-14 13:32:20 +08:00
## Neural networks?
2020-10-19 07:40:42 +08:00
2023-03-21 03:31:34 +08:00
It turns out, a decent autograd tensor library is 90% of what you need for neural networks. Add an optimizer (SGD, Adam, AdamW implemented) from tinygrad.nn.optim, write some boilerplate minibatching code, and you have all you need.
2020-10-19 07:40:42 +08:00
### Neural network example (from test/models/test_mnist.py)
2020-10-19 05:32:45 +08:00
```python
from tinygrad.tensor import Tensor
import tinygrad.nn.optim as optim
2020-10-19 05:32:45 +08:00
class TinyBobNet:
def __init__(self):
self.l1 = Tensor.uniform(784, 128)
self.l2 = Tensor.uniform(128, 10)
2020-10-19 05:32:45 +08:00
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).log_softmax()
2020-10-19 05:32:45 +08:00
model = TinyBobNet()
2020-10-23 20:46:45 +08:00
optim = optim.SGD([model.l1, model.l2], lr=0.001)
2020-10-19 05:32:45 +08:00
2020-10-19 05:38:20 +08:00
# ... and complete like pytorch, with (x,y) data
out = model.forward(x)
loss = out.mul(y).mean()
2020-12-08 15:10:43 +08:00
optim.zero_grad()
2020-10-19 05:38:20 +08:00
loss.backward()
optim.step()
2020-10-19 05:32:45 +08:00
```
2020-10-19 04:08:14 +08:00
2020-12-28 23:41:59 +08:00
## GPU and Accelerator Support
2020-11-03 00:33:48 +08:00
2020-12-04 02:43:11 +08:00
tinygrad supports GPUs through PyOpenCL.
2020-11-03 00:33:48 +08:00
```python
from tinygrad.tensor import Tensor
(Tensor.ones(4,4).gpu() + Tensor.ones(4,4).gpu()).cpu()
2020-11-03 00:33:48 +08:00
```
2022-06-09 02:46:09 +08:00
### hlops (in tensor.py)
hlops are syntactic sugar around mlops. They support most things torch does.
2022-06-09 02:46:09 +08:00
2022-06-09 02:41:19 +08:00
### mlops
2020-12-14 13:32:20 +08:00
2023-03-03 00:15:26 +08:00
mlops are mid level ops. They understand derivatives. They are very simple.
2020-12-14 13:32:20 +08:00
```
2023-05-26 14:10:41 +08:00
Relu, Log, Exp, Sin # unary ops
Sum, Max # reduce ops (with axis argument)
Maximum, Add, Sub, Mul, Pow, Div, Equal # binary ops (no broadcasting, use expand)
Expand, Reshape, Permute, Pad, Shrink, Flip # movement ops
2020-12-14 13:32:20 +08:00
```
2022-06-09 02:41:19 +08:00
You no longer need to write mlops for a new accelerator
### Adding an accelerator (llops)
2022-06-09 02:46:09 +08:00
The autodiff stuff is all in mlops now so you can focus on the raw operations
2022-06-09 02:41:19 +08:00
```
Buffer # class of memory on this device
2023-05-26 14:10:41 +08:00
unary_op (NOOP, EXP, LOG, CAST, SIN) # A -> A
reduce_op (SUM, MAX) # A -> B (smaller size, B has 1 in shape)
binary_op (ADD, SUB, MUL, DIV, POW, CMPEQ, MAX) # A + A -> A (all the same size)
movement_op (EXPAND, RESHAPE, PERMUTE, PAD, SHRINK, STRIDE) # A -> B (different size)
fused_op [[optional]] (MULACC) # A * A -> B
2022-06-09 02:41:19 +08:00
```
2020-12-14 13:32:20 +08:00
## ImageNet inference
2020-11-05 03:20:22 +08:00
Despite being tiny, tinygrad supports the full EfficientNet. Pass in a picture to discover what it is.
2020-11-03 00:30:43 +08:00
```bash
2023-05-26 14:10:41 +08:00
python3 examples/efficientnet.py https://media.istockphoto.com/photos/hen-picture-id831791190
2020-11-03 00:30:43 +08:00
```
2020-11-10 02:20:56 +08:00
Or, if you have a webcam and cv2 installed
2020-11-08 04:26:57 +08:00
```bash
2023-05-26 14:10:41 +08:00
python3 examples/efficientnet.py webcam
2020-11-08 04:26:57 +08:00
```
2023-05-26 14:10:41 +08:00
PROTIP: Set "DEBUG=2" environment variable if you want to see why it's slow.
2020-12-05 01:24:46 +08:00
2022-09-06 09:51:56 +08:00
### tinygrad supports Stable Diffusion!
You might need to download the [weight](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original/resolve/main/sd-v1-4.ckpt) of Stable Diffusion and put it into weights/
Run `python3 examples/stable_diffusion.py`
2022-09-07 05:29:23 +08:00
2022-09-06 09:51:56 +08:00
<p align="center">
<img src="https://raw.githubusercontent.com/geohot/tinygrad/master/docs/stable_diffusion_by_tinygrad.jpg">
</p>
2022-09-06 23:06:11 +08:00
<p align="center">
2022-09-06 09:51:56 +08:00
"a horse sized cat eating a bagel"
2022-09-06 23:06:11 +08:00
</p>
2022-09-06 09:51:56 +08:00
2023-05-26 14:10:41 +08:00
### tinygrad supports LLaMA
After putting the weights in weights/LLaMA, you can have a chat with Stacy. She lives inside tinygrad.
```bash
python3 examples/llama.py
```
2021-10-31 10:47:34 +08:00
### tinygrad supports GANs
2020-12-14 12:24:33 +08:00
See `examples/mnist_gan.py`
<p align="center">
<img src="https://raw.githubusercontent.com/geohot/tinygrad/master/docs/mnist_by_tinygrad.jpg">
</p>
2021-10-31 10:47:34 +08:00
### tinygrad supports yolo
See `examples/yolov3.py`
<p align="center">
<img src="https://raw.githubusercontent.com/geohot/tinygrad/master/docs/yolo_by_tinygrad.jpg">
</p>
2022-06-06 03:13:05 +08:00
### Drawing Execution Graph
2022-06-06 03:16:50 +08:00
2022-06-06 03:13:05 +08:00
```bash
GRAPH=1 python3 test/models/test_mnist.py TestMNIST.test_sgd_onestep
2022-06-17 07:29:18 +08:00
# requires dot, outputs /tmp/net.svg
2022-06-06 03:13:05 +08:00
```
2020-10-27 23:10:51 +08:00
### Running tests
For more examples on how to run the full test suite please refer to the [CI workflow](.github/workflows/test.yml).
2020-10-27 23:10:51 +08:00
```bash
python3 -m pip install -e '.[testing]'
2020-11-28 22:20:02 +08:00
python3 -m pytest
python3 -m pytest -v -k TestTrain
python3 ./test/models/test_train.py TestTrain.test_efficientnet
2020-10-27 23:10:51 +08:00
```