tinygrad/test/mnist.py

91 lines
2.4 KiB
Python
Raw Normal View History

2020-10-19 01:16:01 +08:00
#!/usr/bin/env python
import numpy as np
2020-10-19 03:48:17 +08:00
from tinygrad.tensor import Tensor
2020-10-19 01:16:01 +08:00
from tqdm import trange
# load the mnist dataset
def fetch(url):
import requests, gzip, os, hashlib, numpy
fp = os.path.join("/tmp", hashlib.md5(url.encode('utf-8')).hexdigest())
if not os.path.isfile(fp):
with open(fp, "rb") as f:
dat = f.read()
else:
with open(fp, "wb") as f:
dat = requests.get(url).content
f.write(dat)
return numpy.frombuffer(gzip.decompress(dat), dtype=np.uint8).copy()
X_train = fetch("http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz")[0x10:].reshape((-1, 28, 28))
Y_train = fetch("http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz")[8:]
X_test = fetch("http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz")[0x10:].reshape((-1, 28, 28))
Y_test = fetch("http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz")[8:]
# train a model
def layer_init(m, h):
ret = np.random.uniform(-1., 1., size=(m,h))/np.sqrt(m*h)
return ret.astype(np.float32)
2020-10-19 04:08:14 +08:00
class TinyBobNet:
def __init__(self):
self.l1 = Tensor(layer_init(784, 128))
self.l2 = Tensor(layer_init(128, 10))
def forward(self, x):
return x.dot(self.l1).relu().dot(self.l2).logsoftmax()
2020-10-19 04:27:59 +08:00
# optimizer
class SGD:
def __init__(self, tensors, lr):
self.tensors = tensors
self.lr = lr
def step(self):
for t in self.tensors:
t.data -= self.lr * t.grad
2020-10-19 04:08:14 +08:00
model = TinyBobNet()
2020-10-19 04:27:59 +08:00
optim = SGD([model.l1, model.l2], lr=0.01)
2020-10-19 01:16:01 +08:00
BS = 128
losses, accuracies = [], []
for i in (t := trange(1000)):
samp = np.random.randint(0, X_train.shape[0], size=(BS))
x = Tensor(X_train[samp].reshape((-1, 28*28)))
Y = Y_train[samp]
y = np.zeros((len(samp),10), np.float32)
y[range(y.shape[0]),Y] = -1.0
y = Tensor(y)
2020-10-19 04:08:14 +08:00
# network
outs = model.forward(x)
# NLL loss function
loss = outs.mul(y).mean()
loss.backward()
2020-10-19 04:27:59 +08:00
optim.step()
2020-10-19 01:16:01 +08:00
2020-10-19 04:08:14 +08:00
cat = np.argmax(outs.data, axis=1)
2020-10-19 01:16:01 +08:00
accuracy = (cat == Y).mean()
2020-10-19 04:08:14 +08:00
# printing
loss = loss.data
2020-10-19 01:16:01 +08:00
losses.append(loss)
accuracies.append(accuracy)
t.set_description("loss %.2f accuracy %.2f" % (loss, accuracy))
2020-10-19 04:08:14 +08:00
# evaluate
2020-10-19 01:16:01 +08:00
def numpy_eval():
2020-10-19 04:08:14 +08:00
Y_test_preds_out = model.forward(Tensor(X_test.reshape((-1, 28*28))))
Y_test_preds = np.argmax(Y_test_preds_out.data, axis=1)
2020-10-19 01:16:01 +08:00
return (Y_test == Y_test_preds).mean()
2020-10-19 03:48:17 +08:00
accuracy = numpy_eval()
print("test set accuracy is %f" % accuracy)
assert accuracy > 0.95