Everything in [Tensor](../tensor/index.md) is syntactic sugar around [function.py](function.md), where the forwards and backwards passes are implemented for the different functions. There's about 25 of them, implemented using about 20 basic ops. Those basic ops go on to construct a graph of:
The `LazyBuffer` graph specifies the compute in terms of low level tinygrad ops. Not all LazyBuffers will actually become realized. There's two types of LazyBuffers, base and view. base contains compute into a contiguous buffer, and view is a view (specified by a ShapeTracker). Inputs to a base can be either base or view, inputs to a view can only be a single base.
The [scheduler](https://github.com/tinygrad/tinygrad/tree/master/tinygrad/engine/schedule.py) converts the graph of LazyBuffers into a list of `ScheduleItem`. One `ScheduleItem` is one kernel on the GPU, and the scheduler is responsible for breaking the large compute graph into subgraphs that can fit in a kernel. `ast` specifies what compute to run, and `bufs` specifies what buffers to run it on.
Runtimes are responsible for device-specific interactions. They handle tasks such as initializing devices, allocating memory, loading/launching programs, and more. You can find more information about the runtimes API on the [runtime overview page](runtime.md).
HCQ API is a lower-level API for defining runtimes. Interaction with HCQ-compatible devices occurs at a lower level, with commands issued directly to hardware queues. Some examples of such backends are [NV](https://github.com/tinygrad/tinygrad/tree/master/tinygrad/runtime/ops_nv.py) and [AMD](https://github.com/tinygrad/tinygrad/tree/master/tinygrad/runtime/ops_amd.py), which are userspace drivers for NVIDIA and AMD devices respectively. You can find more information about the API on [HCQ overview page](hcq.md)