tinygrad/test/test_dtype.py

331 lines
16 KiB
Python
Raw Normal View History

# ruff: noqa: E501
import unittest
import numpy as np
import torch
from tinygrad.helpers import CI, DTYPES_DICT, getenv, DType, DEBUG, ImageDType, PtrDType, OSX, least_upper_float, temp, least_upper_dtype
from tinygrad import Device
from tinygrad.tensor import Tensor, dtypes
from typing import Any, List
from hypothesis import given, settings, strategies as st
def is_dtype_supported(dtype: DType):
# for GPU, cl_khr_fp16 isn't supported (except now we don't need it!)
# for LLVM, it segfaults because it can't link to the casting function
if dtype == dtypes.half: return not (CI and Device.DEFAULT in ["GPU", "LLVM"]) and Device.DEFAULT != "WEBGPU" and getenv("CUDACPU") != 1
if dtype == dtypes.bfloat16: return False # numpy doesn't support bf16, tested separately in TestBFloat16DType
if dtype == dtypes.float64: return Device.DEFAULT not in ["WEBGPU", "METAL"] and (not OSX and Device.DEFAULT == "GPU")
if dtype in [dtypes.int8, dtypes.uint8]: return Device.DEFAULT not in ["WEBGPU"]
if dtype in [dtypes.int16, dtypes.uint16]: return Device.DEFAULT not in ["WEBGPU", "TORCH"]
if dtype == dtypes.uint32: return Device.DEFAULT not in ["TORCH"]
if dtype in [dtypes.int64, dtypes.uint64]: return Device.DEFAULT not in ["WEBGPU", "TORCH"]
if dtype == dtypes.bool:
# host-shareablity is a requirement for storage buffers, but 'bool' type is not host-shareable
if Device.DEFAULT == "WEBGPU": return False
return True
def get_available_cast_dtypes(dtype: DType) -> List[DType]: return [v for k, v in DTYPES_DICT.items() if v != dtype and is_dtype_supported(v) and not k.startswith("_")] # dont cast internal dtypes
def _test_to_np(a:Tensor, np_dtype, target):
if DEBUG >= 2: print(a)
na = a.numpy()
if DEBUG >= 2: print(na, na.dtype, a.lazydata.realized)
try:
assert na.dtype == np_dtype
np.testing.assert_allclose(na, target)
except AssertionError as e:
raise AssertionError(f"\ntensor {a.numpy()} does not match target {target} with np_dtype {np_dtype}") from e
def _assert_eq(tensor:Tensor, target_dtype:DType, target):
if DEBUG >= 2: print(tensor.numpy())
try:
assert tensor.dtype == target_dtype
np.testing.assert_allclose(tensor.numpy(), target)
except AssertionError as e:
raise AssertionError(f"\ntensor {tensor.numpy()} dtype {tensor.dtype} does not match target {target} with dtype {target_dtype}") from e
def _test_op(fxn, target_dtype:DType, target): _assert_eq(fxn(), target_dtype, target)
2023-12-12 11:14:00 +08:00
def _test_cast(a:Tensor, target_dtype:DType): _test_op(lambda: a.cast(target_dtype), target_dtype, list(a.numpy().astype(target_dtype.np)))
def _test_bitcast(a:Tensor, target_dtype:DType, target=None): _test_op(lambda: a.bitcast(target_dtype), target_dtype, target or a.numpy().view(target_dtype.np).tolist())
class TestDType(unittest.TestCase):
DTYPE: Any = None
DATA: Any = None
@classmethod
def setUpClass(cls):
if not cls.DTYPE or not is_dtype_supported(cls.DTYPE): raise unittest.SkipTest("dtype not supported")
cls.DATA = np.random.randint(0, 100, size=10, dtype=cls.DTYPE.np).tolist() if dtypes.is_int(cls.DTYPE) else np.random.choice([True, False], size=10).tolist() if cls.DTYPE == dtypes.bool else np.random.uniform(0, 1, size=10).tolist()
def setUp(self):
if self.DTYPE is None: raise unittest.SkipTest("base class")
def test_to_np(self): _test_to_np(Tensor(self.DATA, dtype=self.DTYPE), self.DTYPE.np, np.array(self.DATA, dtype=self.DTYPE.np))
def test_casts_to(self): list(map(
lambda dtype: _test_cast(Tensor(self.DATA, dtype=dtype), self.DTYPE),
get_available_cast_dtypes(self.DTYPE)
))
def test_casts_from(self): list(map(
lambda dtype: _test_cast(Tensor(self.DATA, dtype=self.DTYPE), dtype),
get_available_cast_dtypes(self.DTYPE)
))
def test_same_size_ops(self):
def get_target_dtype(dtype):
if any([dtypes.is_float(dtype), dtypes.is_float(self.DTYPE)]): return max([dtype, self.DTYPE], key=lambda x: x.priority)
return dtype if dtypes.is_unsigned(dtype) else self.DTYPE
list(map(
lambda dtype: _test_ops(a_dtype=self.DTYPE, b_dtype=dtype, target_dtype=get_target_dtype(dtype)) if dtype.itemsize == self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_upcast_ops(self): list(map(
lambda dtype: _test_ops(a_dtype=self.DTYPE, b_dtype=dtype) if dtype.itemsize > self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_upcast_to_ops(self):
list(map(
lambda dtype: _test_ops(a_dtype=dtype, b_dtype=self.DTYPE) if dtype.itemsize < self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_bitcast(self):
if self.DTYPE == dtypes.bool: raise unittest.SkipTest("no bools in bitcast")
list(map(
lambda dtype: _test_bitcast(Tensor(self.DATA, dtype=self.DTYPE), dtype) if dtype.itemsize == self.DTYPE.itemsize and dtype != dtypes.bool else None,
get_available_cast_dtypes(self.DTYPE)
))
def _test_ops(a_dtype:DType, b_dtype:DType, target_dtype=None):
if not is_dtype_supported(a_dtype) or not is_dtype_supported(b_dtype): return
if a_dtype == dtypes.bool or b_dtype == dtypes.bool: return
target_dtype = target_dtype or (max([a_dtype, b_dtype], key=lambda x: x.priority) if a_dtype.priority != b_dtype.priority else max([a_dtype, b_dtype], key=lambda x: x.itemsize))
_assert_eq(Tensor([1,2,3,4], dtype=a_dtype)+Tensor([1,2,3,4], dtype=b_dtype), target_dtype, [2,4,6,8])
_assert_eq(Tensor([1,2,3,4], dtype=a_dtype)*Tensor([1,2,3,4], dtype=b_dtype), target_dtype, [1,4,9,16])
_assert_eq(Tensor([[1,2],[3,4]], dtype=a_dtype)@Tensor.eye(2, dtype=b_dtype), target_dtype, [[1,2],[3,4]])
_assert_eq(Tensor([1,1,1,1], dtype=a_dtype)+Tensor.ones((4,4), dtype=b_dtype), target_dtype, 2*Tensor.ones(4,4).numpy())
class TestBFloat16DType(unittest.TestCase):
def setUp(self):
if not is_dtype_supported(dtypes.bfloat16): raise unittest.SkipTest("bfloat16 not supported")
def test_bf16_to_float(self):
with self.assertRaises(AssertionError):
_test_cast(Tensor([100000], dtype=dtypes.bfloat16), dtypes.float32, [100000])
def test_float_to_bf16(self):
with self.assertRaises(AssertionError):
_test_cast(Tensor([100000], dtype=dtypes.float32), dtypes.bfloat16, [100000])
# torch.tensor([10000, -1, -1000, -10000, 20]).type(torch.bfloat16)
def test_bf16(self):
t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.bfloat16)
t.realize()
back = t.cast(dtypes.float32)
assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20)
def test_bf16_disk_write_read(self):
t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.float32)
t.to(f"disk:{temp('f32')}").realize()
# hack to "cast" f32 -> bf16
dat = open(temp('f32'), "rb").read()
adat = b''.join([dat[i+2:i+4] for i in range(0, len(dat), 4)])
with open(temp('bf16'), "wb") as f: f.write(adat)
t = Tensor.empty(5, dtype=dtypes.bfloat16, device=f"disk:{temp('bf16')}").llvm().realize()
back = t.cast(dtypes.float32)
assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20)
class TestHalfDtype(TestDType): DTYPE = dtypes.half
class TestFloatDType(TestDType): DTYPE = dtypes.float
class TestDoubleDtype(TestDType): DTYPE = dtypes.double
class TestInt8Dtype(TestDType):
DTYPE = dtypes.int8
@unittest.skipIf(getenv("CUDA",0)==1 or getenv("PTX", 0)==1, "cuda saturation works differently")
def test_int8_to_uint8_negative(self): _test_op(lambda: Tensor([-1, -2, -3, -4], dtype=dtypes.int8).cast(dtypes.uint8), dtypes.uint8, [255, 254, 253, 252])
class TestUint8Dtype(TestDType):
DTYPE = dtypes.uint8
@unittest.skipIf(getenv("CUDA",0)==1 or getenv("PTX", 0)==1, "cuda saturation works differently")
def test_uint8_to_int8_overflow(self): _test_op(lambda: Tensor([255, 254, 253, 252], dtype=dtypes.uint8).cast(dtypes.int8), dtypes.int8, [-1, -2, -3, -4])
class TestBitCast(unittest.TestCase):
def test_shape_change_bitcast(self):
with self.assertRaises(AssertionError):
_test_bitcast(Tensor([100000], dtype=dtypes.float32), dtypes.uint8, [100000])
class TestInt16Dtype(TestDType): DTYPE = dtypes.int16
class TestUint16Dtype(TestDType): DTYPE = dtypes.uint16
Added Test Coverage to Int32 and Make Sure Tests Succeed (#1174) * Added test coverage for int32 in `test/test_dtype.py` Tests for int32 include: - testing that int32 can be converted into a numpy array - testing that float and int64 can be cast into int32 - testing that int32 can be cast into float and int64 - testing addition, multiplication, and matrix multiplication with int32 - testing that addition, multiplication, and matrix multiplication with int32 and either float or int64 gets successfully cast into float and int64, respectively Additional changes include testing that int8 casts into int32 and testing that float16 casts into int32 * Added type casting to the add, subtract, and divide binary operations * Added automatic type casting when types differ to FusedOps.MULACC I moved the match_types function back so that I could call it in einsum_mulacc where it would cast the types of the MULACC to be the same * Added unit test for match_types and added type hints to the parameters * Added tests for ops_cpu.match_types * Changed ops_cpu.einsum logic to play nicely with PyTorch Changed `tinygrad.runtime.ops_cpu.einsum_mulacc` logic to not perform type matching. Type matching was instead moved to the numpy_fxn_for_op dictionary in the ops_cpu file. Since ops_torch uses the same einsum_mulacc function, this should fix all the broken pytorch tests. * empty commit to rerun ci * reverting PR#1213 in attempt to fix broken test * Removed all tests I added to see if they are causing CI issues * Added back type matching tests * removed type matching tests and added back int tests * added back part of the type matching tests * removed braking type matching tests * empty commit for testing * added test back but inside comment * removed a test from the comment to see if it breaks CI * removed another function * more testing * emptied test comment * cleaned up comments * Added optimize=True flag to einsum_mullac in cpu_ops.py * Removed unnecessary imports from tests * optimized match_types by removing unnecessary array copying
2023-07-13 01:29:15 +08:00
class TestInt32Dtype(TestDType): DTYPE = dtypes.int32
class TestUint32Dtype(TestDType): DTYPE = dtypes.uint32
Added Test Coverage to Int32 and Make Sure Tests Succeed (#1174) * Added test coverage for int32 in `test/test_dtype.py` Tests for int32 include: - testing that int32 can be converted into a numpy array - testing that float and int64 can be cast into int32 - testing that int32 can be cast into float and int64 - testing addition, multiplication, and matrix multiplication with int32 - testing that addition, multiplication, and matrix multiplication with int32 and either float or int64 gets successfully cast into float and int64, respectively Additional changes include testing that int8 casts into int32 and testing that float16 casts into int32 * Added type casting to the add, subtract, and divide binary operations * Added automatic type casting when types differ to FusedOps.MULACC I moved the match_types function back so that I could call it in einsum_mulacc where it would cast the types of the MULACC to be the same * Added unit test for match_types and added type hints to the parameters * Added tests for ops_cpu.match_types * Changed ops_cpu.einsum logic to play nicely with PyTorch Changed `tinygrad.runtime.ops_cpu.einsum_mulacc` logic to not perform type matching. Type matching was instead moved to the numpy_fxn_for_op dictionary in the ops_cpu file. Since ops_torch uses the same einsum_mulacc function, this should fix all the broken pytorch tests. * empty commit to rerun ci * reverting PR#1213 in attempt to fix broken test * Removed all tests I added to see if they are causing CI issues * Added back type matching tests * removed type matching tests and added back int tests * added back part of the type matching tests * removed braking type matching tests * empty commit for testing * added test back but inside comment * removed a test from the comment to see if it breaks CI * removed another function * more testing * emptied test comment * cleaned up comments * Added optimize=True flag to einsum_mullac in cpu_ops.py * Removed unnecessary imports from tests * optimized match_types by removing unnecessary array copying
2023-07-13 01:29:15 +08:00
class TestInt64Dtype(TestDType): DTYPE = dtypes.int64
class TestUint64Dtype(TestDType): DTYPE = dtypes.uint64
Added Test Coverage to Int32 and Make Sure Tests Succeed (#1174) * Added test coverage for int32 in `test/test_dtype.py` Tests for int32 include: - testing that int32 can be converted into a numpy array - testing that float and int64 can be cast into int32 - testing that int32 can be cast into float and int64 - testing addition, multiplication, and matrix multiplication with int32 - testing that addition, multiplication, and matrix multiplication with int32 and either float or int64 gets successfully cast into float and int64, respectively Additional changes include testing that int8 casts into int32 and testing that float16 casts into int32 * Added type casting to the add, subtract, and divide binary operations * Added automatic type casting when types differ to FusedOps.MULACC I moved the match_types function back so that I could call it in einsum_mulacc where it would cast the types of the MULACC to be the same * Added unit test for match_types and added type hints to the parameters * Added tests for ops_cpu.match_types * Changed ops_cpu.einsum logic to play nicely with PyTorch Changed `tinygrad.runtime.ops_cpu.einsum_mulacc` logic to not perform type matching. Type matching was instead moved to the numpy_fxn_for_op dictionary in the ops_cpu file. Since ops_torch uses the same einsum_mulacc function, this should fix all the broken pytorch tests. * empty commit to rerun ci * reverting PR#1213 in attempt to fix broken test * Removed all tests I added to see if they are causing CI issues * Added back type matching tests * removed type matching tests and added back int tests * added back part of the type matching tests * removed braking type matching tests * empty commit for testing * added test back but inside comment * removed a test from the comment to see if it breaks CI * removed another function * more testing * emptied test comment * cleaned up comments * Added optimize=True flag to einsum_mullac in cpu_ops.py * Removed unnecessary imports from tests * optimized match_types by removing unnecessary array copying
2023-07-13 01:29:15 +08:00
class TestBoolDtype(TestDType): DTYPE = dtypes.bool
class TestImageDType(unittest.TestCase):
def test_image_scalar(self):
assert dtypes.imagef((10,10)).scalar() == dtypes.float32
assert dtypes.imageh((10,10)).scalar() == dtypes.float32
def test_image_vec(self):
assert dtypes.imagef((10,10)).vec(4) == dtypes.float32.vec(4)
assert dtypes.imageh((10,10)).vec(4) == dtypes.float32.vec(4)
class TestEqStrDType(unittest.TestCase):
def test_image_ne(self):
if ImageDType is None: raise unittest.SkipTest("no ImageDType support")
assert dtypes.float == dtypes.float32, "float doesn't match?"
assert dtypes.imagef((1,2,4)) != dtypes.imageh((1,2,4)), "different image dtype doesn't match"
assert dtypes.imageh((1,2,4)) != dtypes.imageh((1,4,2)), "different shape doesn't match"
assert dtypes.imageh((1,2,4)) == dtypes.imageh((1,2,4)), "same shape matches"
assert isinstance(dtypes.imageh((1,2,4)), ImageDType)
def test_ptr_ne(self):
if PtrDType is None: raise unittest.SkipTest("no PtrDType support")
# TODO: is this the wrong behavior?
assert PtrDType(dtypes.float32) == dtypes.float32
#assert PtrDType(dtypes.float32) == PtrDType(dtypes.float32)
#assert PtrDType(dtypes.float32) != dtypes.float32
def test_strs(self):
if PtrDType is None: raise unittest.SkipTest("no PtrDType support")
self.assertEqual(str(dtypes.imagef((1,2,4))), "dtypes.imagef((1, 2, 4))")
self.assertEqual(str(PtrDType(dtypes.float32)), "ptr.dtypes.float")
class TestHelpers(unittest.TestCase):
signed_ints = (dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64)
uints = (dtypes.uint8, dtypes.uint16, dtypes.uint32, dtypes.uint64)
floats = (dtypes.float16, dtypes.float32, dtypes.float64)
@given(st.sampled_from(signed_ints+uints), st.integers(min_value=1, max_value=8))
def test_is_int(self, dtype, amt):
assert dtypes.is_int(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_float(dtype.vec(amt) if amt > 1 else dtype)
@given(st.sampled_from(uints), st.integers(min_value=1, max_value=8))
def test_is_unsigned_uints(self, dtype, amt):
assert dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
@given(st.sampled_from(signed_ints), st.integers(min_value=1, max_value=8))
def test_is_unsigned_signed_ints(self, dtype, amt):
assert not dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
@given(st.sampled_from(floats), st.integers(min_value=1, max_value=8))
def test_is_float(self, dtype, amt):
assert dtypes.is_float(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_int(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
def test_bf16_is_float(self):
assert dtypes.is_float(dtypes.bfloat16)
@given(st.sampled_from([d for d in DTYPES_DICT.values() if dtypes.is_float(d) or dtypes.is_int(d)]), st.integers(min_value=2, max_value=8))
def test_scalar(self, dtype, amt):
assert dtype.vec(amt).scalar() == dtype
class TestTypeSpec(unittest.TestCase):
def test_creation(self):
assert Tensor([]).dtype == Tensor.default_type
# assert Tensor([1]).dtype == dtypes.int
assert Tensor([1.1]).dtype == Tensor.default_type
def test_const_full(self):
assert Tensor.ones([2,3]).dtype == Tensor.default_type
assert Tensor.zeros([2,3]).dtype == Tensor.default_type
assert Tensor.full([2,3], 3.3).dtype == Tensor.default_type
# assert Tensor.full([2,3], 3).dtype == dtypes.int
def test_reduce_0d_default(self):
assert Tensor.ones([2,3,0]).sum(2).dtype == Tensor.default_type
# assert Tensor.ones([2,3,0], dtype=dtypes.int).sum(2).dtype == dtypes.int
def test_arange(self):
assert Tensor.arange(5).dtype == dtypes.int32
assert Tensor.arange(5.0).dtype == Tensor.default_type
assert Tensor.arange(5, dtype=dtypes.int16).dtype == dtypes.int16
assert Tensor.arange(5, dtype=dtypes.int64).dtype == dtypes.int64
assert Tensor.arange(5, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.arange(3, 9, 0.7).dtype == Tensor.default_type
assert Tensor.arange(3, 8.5, 3).dtype == Tensor.default_type
def test_zeros(self):
assert Tensor.zeros(3, 3).dtype == Tensor.default_type
assert Tensor.zeros(3, 3, dtype= dtypes.float16).dtype == dtypes.float16
assert Tensor.zeros(3, 3, dtype= dtypes.int64).dtype == dtypes.int64
def test_ones(self):
assert Tensor.ones(3, 3).dtype == Tensor.default_type
assert Tensor.ones(3, 3, dtype= dtypes.float16).dtype == dtypes.float16
assert Tensor.ones(3, 3, dtype= dtypes.int64).dtype == dtypes.int64
def test_full(self):
assert Tensor.full((3, 3), 3).dtype == dtypes.int
assert Tensor.full((3, 3), 3.0).dtype == Tensor.default_type
assert Tensor.full((3, 3), 3, dtype= dtypes.float16).dtype == dtypes.float16
assert Tensor.full((3, 3), 3, dtype= dtypes.int64).dtype == dtypes.int64
def test_eye(self):
assert Tensor.eye(0).dtype == Tensor.default_type
assert Tensor.eye(3).dtype == Tensor.default_type
assert Tensor.eye(3, dtype= dtypes.float16).dtype == dtypes.float16
assert Tensor.eye(3, dtype= dtypes.int64).dtype == dtypes.int64
core_types = list(DTYPES_DICT.values())
floats = [dt for dt in core_types if dtypes.is_float(dt)]
class TestTypePromotion(unittest.TestCase):
@given(st.sampled_from(core_types))
def test_self_promo_to_self(self, dtype):
assert least_upper_dtype(dtype) == dtype
assert least_upper_dtype(dtype, dtype) == dtype
assert least_upper_dtype(dtype, dtype, dtype) == dtype
@given(st.sampled_from(core_types), st.sampled_from(core_types))
def test_promo_resulted_higher_than_inputs(self, dtype1, dtype2):
result = least_upper_dtype(dtype1, dtype2)
assert result >= dtype1 and result >= dtype2
def test_dtype_promo(self):
assert least_upper_dtype(dtypes.bool, dtypes.int8) == dtypes.int8
assert least_upper_dtype(dtypes.int8, dtypes.uint8) == dtypes.int16
assert least_upper_dtype(dtypes.uint8, dtypes.int16) == dtypes.int16
assert least_upper_dtype(dtypes.int16, dtypes.uint16) == dtypes.int32
assert least_upper_dtype(dtypes.uint16, dtypes.int32) == dtypes.int32
assert least_upper_dtype(dtypes.int32, dtypes.uint32) == dtypes.int64
assert least_upper_dtype(dtypes.uint32, dtypes.int64) == dtypes.int64
# similar to jax but we don't use weak type
assert least_upper_dtype(dtypes.int64, dtypes.uint64) == dtypes.float16
assert least_upper_dtype(dtypes.float16, dtypes.float32) == dtypes.float32
assert least_upper_dtype(dtypes.float32, dtypes.float64) == dtypes.float64
assert least_upper_dtype(dtypes.bool, dtypes.float32) == dtypes.float32
assert least_upper_dtype(dtypes.bool, dtypes.float64) == dtypes.float64
assert least_upper_dtype(dtypes.float16, dtypes.int64) == dtypes.float16
assert least_upper_dtype(dtypes.float16, dtypes.uint64) == dtypes.float16
@given(st.sampled_from(floats))
def test_float_to_float(self, dt):
assert least_upper_float(dt) == dt
class TestAutoCastType(unittest.TestCase):
@given(st.sampled_from([d for d in DTYPES_DICT.values() if dtypes.is_int(d) and is_dtype_supported(d)]))
@settings(deadline=None)
def test_int_to_float_unary_func(self, dtype):
for func in [
lambda t: t.exp(),
# lambda t: t.exp2(), # requires MUL
lambda t: t.log(),
lambda t: t.log2(),
lambda t: t.sqrt(),
# lambda t: t.rsqrt(), # requires DIV
lambda t: t.sin(),
# lambda t: t.cos(), # requires SUB
# lambda t: t.tan(), # requires .cos() to work
lambda t: t.sigmoid(),
]:
a = [2, 3, 4]
np.testing.assert_allclose(func(Tensor(a, dtype=dtype)).numpy(), func(torch.tensor(a)), rtol=1e-4, atol=1e-4)
if __name__ == '__main__':
unittest.main()