panda/board/main_comms.h

397 lines
12 KiB
C
Raw Normal View History

extern int _app_start[0xc000]; // Only first 3 sectors of size 0x4000 are used
// Prototypes
void set_safety_mode(uint16_t mode, uint16_t param);
bool is_car_safety_mode(uint16_t mode);
2024-09-21 06:51:27 +08:00
static int get_health_pkt(void *dat) {
COMPILE_TIME_ASSERT(sizeof(struct health_t) <= USBPACKET_MAX_SIZE);
struct health_t * health = (struct health_t*)dat;
health->uptime_pkt = uptime_cnt;
health->voltage_pkt = current_board->read_voltage_mV();
health->current_pkt = current_board->read_current_mA();
// Use the GPIO pin to determine ignition or use a CAN based logic
health->ignition_line_pkt = (uint8_t)(current_board->check_ignition());
2024-01-21 09:05:12 +08:00
health->ignition_can_pkt = ignition_can;
health->controls_allowed_pkt = controls_allowed;
health->safety_tx_blocked_pkt = safety_tx_blocked;
health->safety_rx_invalid_pkt = safety_rx_invalid;
health->tx_buffer_overflow_pkt = tx_buffer_overflow;
health->rx_buffer_overflow_pkt = rx_buffer_overflow;
health->car_harness_status_pkt = harness.status;
health->safety_mode_pkt = (uint8_t)(current_safety_mode);
health->safety_param_pkt = current_safety_param;
health->alternative_experience_pkt = alternative_experience;
2024-01-21 09:05:12 +08:00
health->power_save_enabled_pkt = power_save_status == POWER_SAVE_STATUS_ENABLED;
health->heartbeat_lost_pkt = heartbeat_lost;
health->safety_rx_checks_invalid_pkt = safety_rx_checks_invalid;
health->spi_checksum_error_count_pkt = spi_checksum_error_count;
health->fault_status_pkt = fault_status;
health->faults_pkt = faults;
health->interrupt_load_pkt = interrupt_load;
health->fan_power = fan_state.power;
health->fan_stall_count = fan_state.total_stall_count;
health->sbu1_voltage_mV = harness.sbu1_voltage_mV;
health->sbu2_voltage_mV = harness.sbu2_voltage_mV;
health->som_reset_triggered = bootkick_reset_triggered;
return sizeof(*health);
}
// send on serial, first byte to select the ring
void comms_endpoint2_write(const uint8_t *data, uint32_t len) {
uart_ring *ur = get_ring_by_number(data[0]);
if ((len != 0U) && (ur != NULL)) {
if ((data[0] < 2U) || (data[0] >= 4U)) {
for (uint32_t i = 1; i < len; i++) {
while (!put_char(ur, data[i])) {
// wait
}
}
}
}
}
int comms_control_handler(ControlPacket_t *req, uint8_t *resp) {
unsigned int resp_len = 0;
uart_ring *ur = NULL;
uint32_t time;
#ifdef DEBUG_COMMS
print("raw control request: "); hexdump(req, sizeof(ControlPacket_t)); print("\n");
print("- request "); puth(req->request); print("\n");
print("- param1 "); puth(req->param1); print("\n");
print("- param2 "); puth(req->param2); print("\n");
#endif
switch (req->request) {
// **** 0xa8: get microsecond timer
case 0xa8:
time = microsecond_timer_get();
resp[0] = (time & 0x000000FFU);
resp[1] = ((time & 0x0000FF00U) >> 8U);
resp[2] = ((time & 0x00FF0000U) >> 16U);
resp[3] = ((time & 0xFF000000U) >> 24U);
resp_len = 4U;
break;
// **** 0xb0: set IR power
case 0xb0:
current_board->set_ir_power(req->param1);
break;
// **** 0xb1: set fan power
case 0xb1:
fan_set_power(req->param1);
break;
// **** 0xb2: get fan rpm
case 0xb2:
resp[0] = (fan_state.rpm & 0x00FFU);
resp[1] = ((fan_state.rpm & 0xFF00U) >> 8U);
resp_len = 2;
break;
// **** 0xc0: reset communications
case 0xc0:
comms_can_reset();
break;
// **** 0xc1: get hardware type
case 0xc1:
resp[0] = hw_type;
resp_len = 1;
break;
// **** 0xc2: CAN health stats
case 0xc2:
COMPILE_TIME_ASSERT(sizeof(can_health_t) <= USBPACKET_MAX_SIZE);
if (req->param1 < 3U) {
update_can_health_pkt(req->param1, 0U);
can_health[req->param1].can_speed = (bus_config[req->param1].can_speed / 10U);
can_health[req->param1].can_data_speed = (bus_config[req->param1].can_data_speed / 10U);
can_health[req->param1].canfd_enabled = bus_config[req->param1].canfd_enabled;
can_health[req->param1].brs_enabled = bus_config[req->param1].brs_enabled;
can_health[req->param1].canfd_non_iso = bus_config[req->param1].canfd_non_iso;
resp_len = sizeof(can_health[req->param1]);
(void)memcpy(resp, (uint8_t*)(&can_health[req->param1]), resp_len);
}
break;
// **** 0xc3: fetch MCU UID
case 0xc3:
(void)memcpy(resp, ((uint8_t *)UID_BASE), 12);
resp_len = 12;
break;
// **** 0xc4: get interrupt call rate
case 0xc4:
if (req->param1 < NUM_INTERRUPTS) {
uint32_t load = interrupts[req->param1].call_rate;
resp[0] = (load & 0x000000FFU);
resp[1] = ((load & 0x0000FF00U) >> 8U);
resp[2] = ((load & 0x00FF0000U) >> 16U);
resp[3] = ((load & 0xFF000000U) >> 24U);
resp_len = 4U;
}
break;
// **** 0xc5: DEBUG: drive relay
case 0xc5:
set_intercept_relay((req->param1 & 0x1U), (req->param1 & 0x2U));
break;
// **** 0xc6: DEBUG: read SOM GPIO
case 0xc6:
resp[0] = current_board->read_som_gpio();
resp_len = 1;
break;
// **** 0xd0: fetch serial (aka the provisioned dongle ID)
case 0xd0:
// addresses are OTP
if (req->param1 == 1U) {
(void)memcpy(resp, (uint8_t *)DEVICE_SERIAL_NUMBER_ADDRESS, 0x10);
resp_len = 0x10;
} else {
get_provision_chunk(resp);
resp_len = PROVISION_CHUNK_LEN;
}
break;
// **** 0xd1: enter bootloader mode
case 0xd1:
// this allows reflashing of the bootstub
switch (req->param1) {
case 0:
// only allow bootloader entry on debug builds
#ifdef ALLOW_DEBUG
print("-> entering bootloader\n");
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
#endif
break;
case 1:
print("-> entering softloader\n");
enter_bootloader_mode = ENTER_SOFTLOADER_MAGIC;
NVIC_SystemReset();
break;
default:
print("Bootloader mode invalid\n");
break;
}
break;
// **** 0xd2: get health packet
case 0xd2:
resp_len = get_health_pkt(resp);
break;
// **** 0xd3: get first 64 bytes of signature
case 0xd3:
{
resp_len = 64;
char * code = (char*)_app_start;
int code_len = _app_start[0];
(void)memcpy(resp, &code[code_len], resp_len);
}
break;
// **** 0xd4: get second 64 bytes of signature
case 0xd4:
{
resp_len = 64;
char * code = (char*)_app_start;
int code_len = _app_start[0];
(void)memcpy(resp, &code[code_len + 64], resp_len);
}
break;
// **** 0xd6: get version
case 0xd6:
COMPILE_TIME_ASSERT(sizeof(gitversion) <= USBPACKET_MAX_SIZE);
(void)memcpy(resp, gitversion, sizeof(gitversion));
resp_len = sizeof(gitversion) - 1U;
break;
// **** 0xd8: reset ST
case 0xd8:
NVIC_SystemReset();
break;
// **** 0xdb: set OBD CAN multiplexing mode
case 0xdb:
if (current_board->has_obd) {
if (req->param1 == 1U) {
// Enable OBD CAN
current_board->set_can_mode(CAN_MODE_OBD_CAN2);
} else {
// Disable OBD CAN
current_board->set_can_mode(CAN_MODE_NORMAL);
}
}
break;
// **** 0xdc: set safety mode
case 0xdc:
set_safety_mode(req->param1, (uint16_t)req->param2);
break;
// **** 0xdd: get healthpacket and CANPacket versions
case 0xdd:
resp[0] = HEALTH_PACKET_VERSION;
resp[1] = CAN_PACKET_VERSION;
resp[2] = CAN_HEALTH_PACKET_VERSION;
resp_len = 3;
break;
// **** 0xde: set can bitrate
case 0xde:
2022-11-30 07:56:43 +08:00
if ((req->param1 < PANDA_BUS_CNT) && is_speed_valid(req->param2, speeds, sizeof(speeds)/sizeof(speeds[0]))) {
bus_config[req->param1].can_speed = req->param2;
bool ret = can_init(CAN_NUM_FROM_BUS_NUM(req->param1));
UNUSED(ret);
}
break;
// **** 0xdf: set alternative experience
case 0xdf:
// you can only set this if you are in a non car safety mode
if (!is_car_safety_mode(current_safety_mode)) {
alternative_experience = req->param1;
}
break;
// **** 0xe0: uart read
case 0xe0:
ur = get_ring_by_number(req->param1);
if (!ur) {
break;
}
// read
2024-02-04 15:20:30 +08:00
uint16_t req_length = MIN(req->length, USBPACKET_MAX_SIZE);
while ((resp_len < req_length) &&
get_char(ur, (char*)&resp[resp_len])) {
++resp_len;
}
break;
// **** 0xe1: uart set baud rate
case 0xe1:
ur = get_ring_by_number(req->param1);
if (!ur) {
break;
}
uart_set_baud(ur->uart, req->param2);
break;
// **** 0xe2: uart set parity
case 0xe2:
ur = get_ring_by_number(req->param1);
if (!ur) {
break;
}
switch (req->param2) {
case 0:
// disable parity, 8-bit
ur->uart->CR1 &= ~(USART_CR1_PCE | USART_CR1_M);
break;
case 1:
// even parity, 9-bit
ur->uart->CR1 &= ~USART_CR1_PS;
ur->uart->CR1 |= USART_CR1_PCE | USART_CR1_M;
break;
case 2:
// odd parity, 9-bit
ur->uart->CR1 |= USART_CR1_PS;
ur->uart->CR1 |= USART_CR1_PCE | USART_CR1_M;
break;
default:
break;
}
break;
// **** 0xe4: uart set baud rate extended
case 0xe4:
ur = get_ring_by_number(req->param1);
if (!ur) {
break;
}
uart_set_baud(ur->uart, (int)req->param2*300);
break;
// **** 0xe5: set CAN loopback (for testing)
case 0xe5:
can_loopback = req->param1 > 0U;
can_init_all();
break;
// **** 0xe6: set custom clock source period
case 0xe6:
clock_source_set_period(req->param1);
break;
// **** 0xe7: set power save state
case 0xe7:
set_power_save_state(req->param1);
break;
// **** 0xe8: set can-fd auto swithing mode
case 0xe8:
2024-11-22 03:07:57 +08:00
bus_config[req->param1].canfd_auto = req->param2 > 0U;
break;
// **** 0xf1: Clear CAN ring buffer.
case 0xf1:
if (req->param1 == 0xFFFFU) {
print("Clearing CAN Rx queue\n");
can_clear(&can_rx_q);
2022-11-30 07:56:43 +08:00
} else if (req->param1 < PANDA_BUS_CNT) {
print("Clearing CAN Tx queue\n");
can_clear(can_queues[req->param1]);
} else {
print("Clearing CAN CAN ring buffer failed: wrong bus number\n");
}
break;
// **** 0xf2: Clear UART ring buffer.
case 0xf2:
{
uart_ring * rb = get_ring_by_number(req->param1);
if (rb != NULL) {
print("Clearing UART queue.\n");
clear_uart_buff(rb);
}
break;
}
// **** 0xf3: Heartbeat. Resets heartbeat counter.
case 0xf3:
{
heartbeat_counter = 0U;
heartbeat_lost = false;
heartbeat_disabled = false;
heartbeat_engaged = (req->param1 == 1U);
break;
}
// **** 0xf6: set siren enabled
case 0xf6:
siren_enabled = (req->param1 != 0U);
break;
// **** 0xf7: set green led enabled
case 0xf7:
green_led_enabled = (req->param1 != 0U);
break;
// **** 0xf8: disable heartbeat checks
case 0xf8:
if (!is_car_safety_mode(current_safety_mode)) {
heartbeat_disabled = true;
}
break;
// **** 0xf9: set CAN FD data bitrate
case 0xf9:
2022-11-30 07:56:43 +08:00
if ((req->param1 < PANDA_CAN_CNT) &&
current_board->has_canfd &&
is_speed_valid(req->param2, data_speeds, sizeof(data_speeds)/sizeof(data_speeds[0]))) {
bus_config[req->param1].can_data_speed = req->param2;
bus_config[req->param1].canfd_enabled = (req->param2 >= bus_config[req->param1].can_speed);
bus_config[req->param1].brs_enabled = (req->param2 > bus_config[req->param1].can_speed);
bool ret = can_init(CAN_NUM_FROM_BUS_NUM(req->param1));
UNUSED(ret);
}
break;
// **** 0xfc: set CAN FD non-ISO mode
case 0xfc:
2022-11-30 07:56:43 +08:00
if ((req->param1 < PANDA_CAN_CNT) && current_board->has_canfd) {
bus_config[req->param1].canfd_non_iso = (req->param2 != 0U);
bool ret = can_init(CAN_NUM_FROM_BUS_NUM(req->param1));
UNUSED(ret);
}
break;
default:
print("NO HANDLER ");
puth(req->request);
print("\n");
break;
}
return resp_len;
}