Files
sunnypilot/selfdrive/controls/lib/latcontrol_torque.py
Jason Wen 959ebd22d8 Merge branch 'upstream/openpilot/master' into sync-20260201
# Conflicts:
#	.github/workflows/auto_pr_review.yaml
#	.github/workflows/docs.yaml
#	.github/workflows/repo-maintenance.yaml
#	.gitignore
#	docs/CARS.md
#	opendbc_repo
#	panda
#	pyproject.toml
#	selfdrive/controls/lib/longitudinal_planner.py
#	selfdrive/test/process_replay/ref_commit
#	tinygrad_repo
2026-02-04 00:14:58 -05:00

123 lines
6.2 KiB
Python

import math
import numpy as np
from collections import deque
from cereal import log
from opendbc.car.lateral import FRICTION_THRESHOLD, get_friction
from openpilot.common.constants import ACCELERATION_DUE_TO_GRAVITY
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
from openpilot.common.pid import PIDController
from openpilot.sunnypilot.selfdrive.controls.lib.latcontrol_torque_ext import LatControlTorqueExt
# At higher speeds (25+mph) we can assume:
# Lateral acceleration achieved by a specific car correlates to
# torque applied to the steering rack. It does not correlate to
# wheel slip, or to speed.
# This controller applies torque to achieve desired lateral
# accelerations. To compensate for the low speed effects the
# proportional gain is increased at low speeds by the PID controller.
# Additionally, there is friction in the steering wheel that needs
# to be overcome to move it at all, this is compensated for too.
KP = 0.8
KI = 0.15
INTERP_SPEEDS = [1, 1.5, 2.0, 3.0, 5, 7.5, 10, 15, 30]
KP_INTERP = [250, 120, 65, 30, 11.5, 5.5, 3.5, 2.0, KP]
LP_FILTER_CUTOFF_HZ = 1.2
JERK_LOOKAHEAD_SECONDS = 0.19
JERK_GAIN = 0.3
LAT_ACCEL_REQUEST_BUFFER_SECONDS = 1.0
VERSION = 1
class LatControlTorque(LatControl):
def __init__(self, CP, CP_SP, CI, dt):
super().__init__(CP, CP_SP, CI, dt)
self.torque_params = CP.lateralTuning.torque.as_builder()
self.torque_from_lateral_accel = CI.torque_from_lateral_accel()
self.lateral_accel_from_torque = CI.lateral_accel_from_torque()
self.pid = PIDController([INTERP_SPEEDS, KP_INTERP], KI, rate=1/self.dt)
self.update_limits()
self.steering_angle_deadzone_deg = self.torque_params.steeringAngleDeadzoneDeg
self.lat_accel_request_buffer_len = int(LAT_ACCEL_REQUEST_BUFFER_SECONDS / self.dt)
self.lat_accel_request_buffer = deque([0.] * self.lat_accel_request_buffer_len , maxlen=self.lat_accel_request_buffer_len)
self.lookahead_frames = int(JERK_LOOKAHEAD_SECONDS / self.dt)
self.jerk_filter = FirstOrderFilter(0.0, 1 / (2 * np.pi * LP_FILTER_CUTOFF_HZ), self.dt)
self.extension = LatControlTorqueExt(self, CP, CP_SP, CI)
def update_live_torque_params(self, latAccelFactor, latAccelOffset, friction):
self.torque_params.latAccelFactor = latAccelFactor
self.torque_params.latAccelOffset = latAccelOffset
self.torque_params.friction = friction
self.update_limits()
def update_limits(self):
self.pid.set_limits(self.lateral_accel_from_torque(self.steer_max, self.torque_params),
self.lateral_accel_from_torque(-self.steer_max, self.torque_params))
def update(self, active, CS, VM, params, steer_limited_by_safety, desired_curvature, calibrated_pose, curvature_limited, lat_delay):
# Override torque params from extension
if self.extension.update_override_torque_params(self.torque_params):
self.update_limits()
pid_log = log.ControlsState.LateralTorqueState.new_message()
pid_log.version = VERSION
measured_curvature = -VM.calc_curvature(math.radians(CS.steeringAngleDeg - params.angleOffsetDeg), CS.vEgo, params.roll)
measurement = measured_curvature * CS.vEgo ** 2
future_desired_lateral_accel = desired_curvature * CS.vEgo ** 2
self.lat_accel_request_buffer.append(future_desired_lateral_accel)
roll_compensation = params.roll * ACCELERATION_DUE_TO_GRAVITY
curvature_deadzone = abs(VM.calc_curvature(math.radians(self.steering_angle_deadzone_deg), CS.vEgo, 0.0))
lateral_accel_deadzone = curvature_deadzone * CS.vEgo ** 2
delay_frames = int(np.clip(lat_delay / self.dt + 1, 1, self.lat_accel_request_buffer_len))
expected_lateral_accel = self.lat_accel_request_buffer[-delay_frames]
setpoint = expected_lateral_accel
error = setpoint - measurement
lookahead_idx = int(np.clip(-delay_frames + self.lookahead_frames, -self.lat_accel_request_buffer_len+1, -2))
raw_lateral_jerk = (self.lat_accel_request_buffer[lookahead_idx+1] - self.lat_accel_request_buffer[lookahead_idx-1]) / (2 * self.dt)
desired_lateral_jerk = self.jerk_filter.update(raw_lateral_jerk)
gravity_adjusted_future_lateral_accel = future_desired_lateral_accel - roll_compensation
ff = gravity_adjusted_future_lateral_accel
# latAccelOffset corrects roll compensation bias from device roll misalignment relative to car roll
ff -= self.torque_params.latAccelOffset
ff += get_friction(error + JERK_GAIN * desired_lateral_jerk, lateral_accel_deadzone, FRICTION_THRESHOLD, self.torque_params)
if not active:
output_torque = 0.0
pid_log.active = False
else:
# do error correction in lateral acceleration space, convert at end to handle non-linear torque responses correctly
pid_log.error = float(error)
freeze_integrator = steer_limited_by_safety or CS.steeringPressed or CS.vEgo < 5
output_lataccel = self.pid.update(pid_log.error, speed=CS.vEgo, feedforward=ff, freeze_integrator=freeze_integrator)
output_torque = self.torque_from_lateral_accel(output_lataccel, self.torque_params)
# Lateral acceleration torque controller extension updates
# Overrides pid_log.error and output_torque
pid_log, output_torque = self.extension.update(CS, VM, self.pid, params, ff, pid_log, setpoint, measurement, calibrated_pose, roll_compensation,
future_desired_lateral_accel, measurement, lateral_accel_deadzone, gravity_adjusted_future_lateral_accel,
desired_curvature, measured_curvature, steer_limited_by_safety, output_torque)
pid_log.active = True
pid_log.p = float(self.pid.p)
pid_log.i = float(self.pid.i)
pid_log.d = float(self.pid.d)
pid_log.f = float(self.pid.f)
pid_log.output = float(-output_torque) # TODO: log lat accel?
pid_log.actualLateralAccel = float(measurement)
pid_log.desiredLateralAccel = float(setpoint)
pid_log.desiredLateralJerk = float(desired_lateral_jerk)
pid_log.saturated = bool(self._check_saturation(self.steer_max - abs(output_torque) < 1e-3, CS, steer_limited_by_safety, curvature_limited))
# TODO left is positive in this convention
return -output_torque, 0.0, pid_log