mirror of
https://github.com/sunnypilot/sunnypilot.git
synced 2026-02-18 22:23:56 +08:00
281 lines
8.4 KiB
Python
281 lines
8.4 KiB
Python
import io
|
|
import sys
|
|
import markdown
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from openpilot.selfdrive.controls.tests.test_following_distance import desired_follow_distance
|
|
from openpilot.selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver
|
|
|
|
TIME = 0
|
|
LEAD_DISTANCE= 2
|
|
EGO_V = 3
|
|
EGO_A = 5
|
|
D_REL = 6
|
|
|
|
axis_labels = ['Time (s)',
|
|
'Ego position (m)',
|
|
'Lead absolute position (m)',
|
|
'Ego Velocity (m/s)',
|
|
'Lead Velocity (m/s)',
|
|
'Ego acceleration (m/s^2)',
|
|
'Lead distance (m)'
|
|
]
|
|
|
|
def get_html_from_results(results, labels, AXIS):
|
|
fig, ax = plt.subplots(figsize=(16, 8))
|
|
for idx, speed in enumerate(list(results.keys())):
|
|
ax.plot(results[speed][:, TIME], results[speed][:, AXIS], label=labels[idx])
|
|
|
|
ax.set_xlabel('Time (s)')
|
|
ax.set_ylabel(axis_labels[AXIS])
|
|
ax.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
|
|
ax.grid(True, linestyle='--', alpha=0.7)
|
|
ax.text(-0.075, 0.5, '.', transform=ax.transAxes, color='none')
|
|
|
|
fig_buffer = io.StringIO()
|
|
fig.savefig(fig_buffer, format='svg', bbox_inches='tight')
|
|
plt.close(fig)
|
|
return fig_buffer.getvalue() + '<br/>'
|
|
|
|
def generate_mpc_tuning_report():
|
|
htmls = []
|
|
|
|
results = {}
|
|
name = 'Resuming behind lead'
|
|
labels = []
|
|
for lead_accel in np.linspace(1.0, 4.0, 4):
|
|
man = Maneuver(
|
|
'',
|
|
duration=11,
|
|
initial_speed=0.0,
|
|
lead_relevancy=True,
|
|
initial_distance_lead=desired_follow_distance(0.0, 0.0),
|
|
speed_lead_values=[0.0, 10 * lead_accel],
|
|
cruise_values=[100, 100],
|
|
prob_lead_values=[1.0, 1.0],
|
|
breakpoints=[1., 11],
|
|
)
|
|
valid, results[lead_accel] = man.evaluate()
|
|
labels.append(f'{lead_accel} m/s^2 lead acceleration')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_V))
|
|
htmls.append(get_html_from_results(results, labels, EGO_A))
|
|
|
|
|
|
results = {}
|
|
name = 'Approaching stopped car from 140m'
|
|
labels = []
|
|
for speed in np.arange(0,45,5):
|
|
man = Maneuver(
|
|
name,
|
|
duration=30.,
|
|
initial_speed=float(speed),
|
|
lead_relevancy=True,
|
|
initial_distance_lead=140.,
|
|
speed_lead_values=[0.0, 0.],
|
|
breakpoints=[0., 30.],
|
|
)
|
|
valid, results[speed] = man.evaluate()
|
|
results[speed][:,2] = results[speed][:,2] - results[speed][:,1]
|
|
labels.append(f'{speed} m/s approach speed')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_A))
|
|
htmls.append(get_html_from_results(results, labels, D_REL))
|
|
|
|
|
|
results = {}
|
|
name = 'Following 5s (triangular) oscillating lead'
|
|
labels = []
|
|
speed = np.int64(10)
|
|
for oscil in np.arange(0, 10, 1):
|
|
man = Maneuver(
|
|
'',
|
|
duration=30.,
|
|
initial_speed=float(speed),
|
|
lead_relevancy=True,
|
|
initial_distance_lead=desired_follow_distance(speed, speed),
|
|
speed_lead_values=[speed, speed, speed - oscil, speed + oscil, speed - oscil, speed + oscil, speed - oscil],
|
|
breakpoints=[0.,2., 5, 8, 15, 18, 25.],
|
|
)
|
|
valid, results[oscil] = man.evaluate()
|
|
labels.append(f'{oscil} m/s oscillation size')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, D_REL))
|
|
htmls.append(get_html_from_results(results, labels, EGO_V))
|
|
htmls.append(get_html_from_results(results, labels, EGO_A))
|
|
|
|
|
|
results = {}
|
|
name = 'Speed profile when converging to steady state lead at 30m/s'
|
|
labels = []
|
|
for distance in np.arange(20, 140, 10):
|
|
man = Maneuver(
|
|
'',
|
|
duration=50,
|
|
initial_speed=30.0,
|
|
lead_relevancy=True,
|
|
initial_distance_lead=distance,
|
|
speed_lead_values=[30.0],
|
|
breakpoints=[0.],
|
|
)
|
|
valid, results[distance] = man.evaluate()
|
|
results[distance][:,2] = results[distance][:,2] - results[distance][:,1]
|
|
labels.append(f'{distance} m initial distance')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_V))
|
|
htmls.append(get_html_from_results(results, labels, D_REL))
|
|
|
|
|
|
results = {}
|
|
name = 'Speed profile when converging to steady state lead at 20m/s'
|
|
labels = []
|
|
for distance in np.arange(20, 140, 10):
|
|
man = Maneuver(
|
|
'',
|
|
duration=50,
|
|
initial_speed=20.0,
|
|
lead_relevancy=True,
|
|
initial_distance_lead=distance,
|
|
speed_lead_values=[20.0],
|
|
breakpoints=[0.],
|
|
)
|
|
valid, results[distance] = man.evaluate()
|
|
results[distance][:,2] = results[distance][:,2] - results[distance][:,1]
|
|
labels.append(f'{distance} m initial distance')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_V))
|
|
htmls.append(get_html_from_results(results, labels, D_REL))
|
|
|
|
|
|
results = {}
|
|
name = 'Following car at 30m/s that comes to a stop'
|
|
labels = []
|
|
for stop_time in np.arange(4, 14, 1):
|
|
man = Maneuver(
|
|
'',
|
|
duration=50,
|
|
initial_speed=30.0,
|
|
lead_relevancy=True,
|
|
initial_distance_lead=60.0,
|
|
speed_lead_values=[30.0, 30.0, 0.0, 0.0],
|
|
breakpoints=[0., 20., 20 + stop_time, 30 + stop_time],
|
|
)
|
|
valid, results[stop_time] = man.evaluate()
|
|
results[stop_time][:,2] = results[stop_time][:,2] - results[stop_time][:,1]
|
|
labels.append(f'{stop_time} seconds stop time')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_A))
|
|
htmls.append(get_html_from_results(results, labels, D_REL))
|
|
|
|
|
|
results = {}
|
|
name = 'Response to cut-in at half follow distance'
|
|
labels = []
|
|
for speed in np.arange(0, 40, 5):
|
|
man = Maneuver(
|
|
'',
|
|
duration=10,
|
|
initial_speed=float(speed),
|
|
lead_relevancy=True,
|
|
initial_distance_lead=desired_follow_distance(speed, speed)/2,
|
|
speed_lead_values=[speed, speed, speed],
|
|
cruise_values=[speed, speed, speed],
|
|
prob_lead_values=[0.0, 0.0, 1.0],
|
|
breakpoints=[0., 5.0, 5.01],
|
|
)
|
|
valid, results[speed] = man.evaluate()
|
|
labels.append(f'{speed} m/s speed')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_A))
|
|
htmls.append(get_html_from_results(results, labels, D_REL))
|
|
|
|
|
|
results = {}
|
|
name = 'Follow a lead that accelerates at 2m/s^2 until steady state speed'
|
|
labels = []
|
|
for speed in np.arange(0, 40, 5):
|
|
man = Maneuver(
|
|
'',
|
|
duration=50,
|
|
initial_speed=0.0,
|
|
lead_relevancy=True,
|
|
initial_distance_lead=desired_follow_distance(0.0, 0.0),
|
|
speed_lead_values=[0.0, 0.0, speed],
|
|
prob_lead_values=[1.0, 1.0, 1.0],
|
|
breakpoints=[0., 1.0, speed/2],
|
|
)
|
|
valid, results[speed] = man.evaluate()
|
|
labels.append(f'{speed} m/s speed')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_V))
|
|
htmls.append(get_html_from_results(results, labels, EGO_A))
|
|
|
|
|
|
results = {}
|
|
name = 'From stop to cruise'
|
|
labels = []
|
|
for speed in np.arange(0, 40, 5):
|
|
man = Maneuver(
|
|
'',
|
|
duration=50,
|
|
initial_speed=0.0,
|
|
lead_relevancy=True,
|
|
initial_distance_lead=desired_follow_distance(0.0, 0.0),
|
|
speed_lead_values=[0.0, 0.0],
|
|
cruise_values=[0.0, speed],
|
|
prob_lead_values=[0.0, 0.0],
|
|
breakpoints=[1., 1.01],
|
|
)
|
|
valid, results[speed] = man.evaluate()
|
|
labels.append(f'{speed} m/s speed')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_V))
|
|
htmls.append(get_html_from_results(results, labels, EGO_A))
|
|
|
|
|
|
results = {}
|
|
name = 'From cruise to min'
|
|
labels = []
|
|
for speed in np.arange(10, 40, 5):
|
|
man = Maneuver(
|
|
'',
|
|
duration=50,
|
|
initial_speed=float(speed),
|
|
lead_relevancy=True,
|
|
initial_distance_lead=desired_follow_distance(0.0, 0.0),
|
|
speed_lead_values=[0.0, 0.0],
|
|
cruise_values=[speed, 10.0],
|
|
prob_lead_values=[0.0, 0.0],
|
|
breakpoints=[1., 1.01],
|
|
)
|
|
valid, results[speed] = man.evaluate()
|
|
labels.append(f'{speed} m/s speed')
|
|
|
|
htmls.append(markdown.markdown('# ' + name))
|
|
htmls.append(get_html_from_results(results, labels, EGO_V))
|
|
htmls.append(get_html_from_results(results, labels, EGO_A))
|
|
|
|
return htmls
|
|
|
|
if __name__ == '__main__':
|
|
htmls = generate_mpc_tuning_report()
|
|
|
|
if len(sys.argv) < 2:
|
|
file_name = 'long_mpc_tune_report.html'
|
|
else:
|
|
file_name = sys.argv[1]
|
|
|
|
with open(file_name, 'w') as f:
|
|
f.write(markdown.markdown('# MPC longitudinal tuning report'))
|
|
for html in htmls:
|
|
f.write(html)
|