Files
sunnypilot/tools/longitudinal_maneuvers/mpc_longitudinal_tuning_report.py

309 lines
9.3 KiB
Python

import io
import sys
import markdown
import numpy as np
import matplotlib.pyplot as plt
from openpilot.common.realtime import DT_MDL
from openpilot.selfdrive.controls.tests.test_following_distance import desired_follow_distance
from openpilot.selfdrive.test.longitudinal_maneuvers.maneuver import Maneuver
TIME = 0
LEAD_DISTANCE= 2
EGO_V = 3
EGO_A = 5
D_REL = 6
axis_labels = ['Time (s)',
'Ego position (m)',
'Lead absolute position (m)',
'Ego Velocity (m/s)',
'Lead Velocity (m/s)',
'Ego acceleration (m/s^2)',
'Lead distance (m)'
]
def get_html_from_results(results, labels, AXIS):
fig, ax = plt.subplots(figsize=(16, 8))
for idx, speed in enumerate(list(results.keys())):
ax.plot(results[speed][:, TIME], results[speed][:, AXIS], label=labels[idx])
ax.set_xlabel('Time (s)')
ax.set_ylabel(axis_labels[AXIS])
ax.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
ax.grid(True, linestyle='--', alpha=0.7)
ax.text(-0.075, 0.5, '.', transform=ax.transAxes, color='none')
fig_buffer = io.StringIO()
fig.savefig(fig_buffer, format='svg', bbox_inches='tight')
plt.close(fig)
return fig_buffer.getvalue() + '<br/>'
def generate_mpc_tuning_report():
htmls = []
results = {}
name = 'Resuming behind lead'
labels = []
for lead_accel in np.linspace(1.0, 4.0, 4):
man = Maneuver(
'',
duration=11,
initial_speed=0.0,
lead_relevancy=True,
initial_distance_lead=desired_follow_distance(0.0, 0.0),
speed_lead_values=[0.0, 10 * lead_accel],
cruise_values=[100, 100],
prob_lead_values=[1.0, 1.0],
breakpoints=[1., 11],
)
valid, results[lead_accel] = man.evaluate()
labels.append(f'{lead_accel} m/s^2 lead acceleration')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_V))
htmls.append(get_html_from_results(results, labels, EGO_A))
results = {}
name = 'Approaching stopped car from 140m'
labels = []
for speed in np.arange(0,45,5):
man = Maneuver(
name,
duration=30.,
initial_speed=float(speed),
lead_relevancy=True,
initial_distance_lead=140.,
speed_lead_values=[0.0, 0.],
breakpoints=[0., 30.],
)
valid, results[speed] = man.evaluate()
results[speed][:,2] = results[speed][:,2] - results[speed][:,1]
labels.append(f'{speed} m/s approach speed')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_A))
htmls.append(get_html_from_results(results, labels, D_REL))
results = {}
name = 'Following 5s (triangular) oscillating lead'
labels = []
speed = np.int64(10)
for oscil in np.arange(0, 10, 1):
man = Maneuver(
'',
duration=30.,
initial_speed=float(speed),
lead_relevancy=True,
initial_distance_lead=desired_follow_distance(speed, speed),
speed_lead_values=[speed, speed, speed - oscil, speed + oscil, speed - oscil, speed + oscil, speed - oscil],
breakpoints=[0.,2., 5, 8, 15, 18, 25.],
)
valid, results[oscil] = man.evaluate()
labels.append(f'{oscil} m/s oscillation size')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, D_REL))
htmls.append(get_html_from_results(results, labels, EGO_V))
htmls.append(get_html_from_results(results, labels, EGO_A))
results = {}
name = 'Following 5s (sinusoidal) oscillating lead'
labels = []
speed = np.int64(10)
duration = float(30)
f_osc = 1. / 5
for oscil in np.arange(0, 10, 1):
bps = DT_MDL * np.arange(int(duration / DT_MDL))
lead_speeds = speed + oscil * np.sin(2 * np.pi * f_osc * bps)
man = Maneuver(
'',
duration=duration,
initial_speed=float(speed),
lead_relevancy=True,
initial_distance_lead=desired_follow_distance(speed, speed),
speed_lead_values=lead_speeds,
breakpoints=bps,
)
valid, results[oscil] = man.evaluate()
labels.append(f'{oscil} m/s oscilliation size')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, D_REL))
htmls.append(get_html_from_results(results, labels, EGO_V))
htmls.append(get_html_from_results(results, labels, EGO_A))
results = {}
name = 'Speed profile when converging to steady state lead at 30m/s'
labels = []
for distance in np.arange(20, 140, 10):
man = Maneuver(
'',
duration=50,
initial_speed=30.0,
lead_relevancy=True,
initial_distance_lead=distance,
speed_lead_values=[30.0],
breakpoints=[0.],
)
valid, results[distance] = man.evaluate()
results[distance][:,2] = results[distance][:,2] - results[distance][:,1]
labels.append(f'{distance} m initial distance')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_V))
htmls.append(get_html_from_results(results, labels, D_REL))
results = {}
name = 'Speed profile when converging to steady state lead at 20m/s'
labels = []
for distance in np.arange(20, 140, 10):
man = Maneuver(
'',
duration=50,
initial_speed=20.0,
lead_relevancy=True,
initial_distance_lead=distance,
speed_lead_values=[20.0],
breakpoints=[0.],
)
valid, results[distance] = man.evaluate()
results[distance][:,2] = results[distance][:,2] - results[distance][:,1]
labels.append(f'{distance} m initial distance')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_V))
htmls.append(get_html_from_results(results, labels, D_REL))
results = {}
name = 'Following car at 30m/s that comes to a stop'
labels = []
for stop_time in np.arange(4, 14, 1):
man = Maneuver(
'',
duration=50,
initial_speed=30.0,
lead_relevancy=True,
initial_distance_lead=60.0,
speed_lead_values=[30.0, 30.0, 0.0, 0.0],
breakpoints=[0., 20., 20 + stop_time, 30 + stop_time],
)
valid, results[stop_time] = man.evaluate()
results[stop_time][:,2] = results[stop_time][:,2] - results[stop_time][:,1]
labels.append(f'{stop_time} seconds stop time')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_A))
htmls.append(get_html_from_results(results, labels, D_REL))
results = {}
name = 'Response to cut-in at half follow distance'
labels = []
for speed in np.arange(0, 40, 5):
man = Maneuver(
'',
duration=10,
initial_speed=float(speed),
lead_relevancy=True,
initial_distance_lead=desired_follow_distance(speed, speed)/2,
speed_lead_values=[speed, speed, speed],
cruise_values=[speed, speed, speed],
prob_lead_values=[0.0, 0.0, 1.0],
breakpoints=[0., 5.0, 5.01],
)
valid, results[speed] = man.evaluate()
labels.append(f'{speed} m/s speed')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_A))
htmls.append(get_html_from_results(results, labels, D_REL))
results = {}
name = 'Follow a lead that accelerates at 2m/s^2 until steady state speed'
labels = []
for speed in np.arange(0, 40, 5):
man = Maneuver(
'',
duration=50,
initial_speed=0.0,
lead_relevancy=True,
initial_distance_lead=desired_follow_distance(0.0, 0.0),
speed_lead_values=[0.0, 0.0, speed],
prob_lead_values=[1.0, 1.0, 1.0],
breakpoints=[0., 1.0, speed/2],
)
valid, results[speed] = man.evaluate()
labels.append(f'{speed} m/s speed')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_V))
htmls.append(get_html_from_results(results, labels, EGO_A))
results = {}
name = 'From stop to cruise'
labels = []
for speed in np.arange(0, 40, 5):
man = Maneuver(
'',
duration=50,
initial_speed=0.0,
lead_relevancy=True,
initial_distance_lead=desired_follow_distance(0.0, 0.0),
speed_lead_values=[0.0, 0.0],
cruise_values=[0.0, speed],
prob_lead_values=[0.0, 0.0],
breakpoints=[1., 1.01],
)
valid, results[speed] = man.evaluate()
labels.append(f'{speed} m/s speed')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_V))
htmls.append(get_html_from_results(results, labels, EGO_A))
results = {}
name = 'From cruise to min'
labels = []
for speed in np.arange(10, 40, 5):
man = Maneuver(
'',
duration=50,
initial_speed=float(speed),
lead_relevancy=True,
initial_distance_lead=desired_follow_distance(0.0, 0.0),
speed_lead_values=[0.0, 0.0],
cruise_values=[speed, 10.0],
prob_lead_values=[0.0, 0.0],
breakpoints=[1., 1.01],
)
valid, results[speed] = man.evaluate()
labels.append(f'{speed} m/s speed')
htmls.append(markdown.markdown('# ' + name))
htmls.append(get_html_from_results(results, labels, EGO_V))
htmls.append(get_html_from_results(results, labels, EGO_A))
return htmls
if __name__ == '__main__':
htmls = generate_mpc_tuning_report()
if len(sys.argv) < 2:
file_name = 'long_mpc_tune_report.html'
else:
file_name = sys.argv[1]
with open(file_name, 'w') as f:
f.write(markdown.markdown('# MPC longitudinal tuning report'))
for html in htmls:
f.write(html)