mirror of
https://github.com/sunnypilot/sunnypilot.git
synced 2026-02-18 17:43:54 +08:00
Merge branch 'master-new' into mads-new
This commit is contained in:
2
.github/PULL_REQUEST_TEMPLATE/car_port.md
vendored
2
.github/PULL_REQUEST_TEMPLATE/car_port.md
vendored
@@ -8,7 +8,7 @@ assignees: ''
|
||||
|
||||
**Checklist**
|
||||
|
||||
- [ ] added entry to CAR in selfdrive/car/*/values.py and ran `selfdrive/opcar/docs.py` to generate new docs
|
||||
- [ ] added entry to CAR in selfdrive/car/*/values.py and ran `selfdrive/car/docs.py` to generate new docs
|
||||
- [ ] test route added to [routes.py](https://github.com/commaai/openpilot/blob/master/selfdrive/car/tests/routes.py)
|
||||
- [ ] route with openpilot:
|
||||
- [ ] route with stock system:
|
||||
|
||||
2
.github/pull_request_template.md
vendored
2
.github/pull_request_template.md
vendored
@@ -44,7 +44,7 @@ Explain how you tested this bug fix.
|
||||
|
||||
**Checklist**
|
||||
|
||||
- [ ] added entry to CAR in selfdrive/car/*/values.py and ran `selfdrive/opcar/docs.py` to generate new docs
|
||||
- [ ] added entry to CAR in selfdrive/car/*/values.py and ran `selfdrive/car/docs.py` to generate new docs
|
||||
- [ ] test route added to [routes.py](https://github.com/commaai/openpilot/blob/master/selfdrive/car/tests/routes.py)
|
||||
- [ ] route with openpilot:
|
||||
- [ ] route with stock system:
|
||||
|
||||
4
.github/workflows/ci_weekly_run.yaml
vendored
4
.github/workflows/ci_weekly_run.yaml
vendored
@@ -15,7 +15,3 @@ jobs:
|
||||
uses: sunnypilot/sunnypilot/.github/workflows/selfdrive_tests.yaml@master
|
||||
with:
|
||||
run_number: ${{ inputs.run_number }}
|
||||
tools_tests:
|
||||
uses: sunnypilot/sunnypilot/.github/workflows/tools_tests.yaml@master
|
||||
with:
|
||||
run_number: ${{ inputs.run_number }}
|
||||
|
||||
2
.github/workflows/docs.yaml
vendored
2
.github/workflows/docs.yaml
vendored
@@ -18,7 +18,7 @@ concurrency:
|
||||
jobs:
|
||||
docs:
|
||||
name: build docs
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-24.04
|
||||
steps:
|
||||
- uses: commaai/timeout@v1
|
||||
|
||||
|
||||
3
.github/workflows/selfdrive_tests.yaml
vendored
3
.github/workflows/selfdrive_tests.yaml
vendored
@@ -239,7 +239,7 @@ jobs:
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: .ci_cache/comma_download_cache
|
||||
key: car_models-${{ hashFiles('selfdrive/car/tests/test_models.py', 'selfdrive/car/tests/routes.py') }}-${{ matrix.job }}
|
||||
key: car_models-${{ hashFiles('selfdrive/car/tests/test_models.py', 'opendbc/car/tests/routes.py') }}-${{ matrix.job }}
|
||||
- name: Build openpilot
|
||||
run: ${{ env.RUN }} "scons -j$(nproc)"
|
||||
- name: Test car models
|
||||
@@ -317,6 +317,7 @@ jobs:
|
||||
runs-on:
|
||||
- ${{ ((github.repository == 'commaai/openpilot') && ((github.event_name != 'pull_request') || (github.event.pull_request.head.repo.full_name == 'commaai/openpilot'))) && 'namespace-profile-amd64-8x16' || 'ubuntu-24.04' }}
|
||||
- ${{ ((github.repository == 'commaai/openpilot') && ((github.event_name != 'pull_request') || (github.event.pull_request.head.repo.full_name == 'commaai/openpilot'))) && 'namespace-experiments:docker.builds.local-cache=separate' || 'ubuntu-24.04' }}
|
||||
if: (github.repository == 'commaai/openpilot') && ((github.event_name != 'pull_request') || (github.event.pull_request.head.repo.full_name == 'commaai/openpilot'))
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
FROM ghcr.io/commaai/openpilot-base:latest
|
||||
|
||||
ENV PYTHONUNBUFFERED 1
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
|
||||
ENV OPENPILOT_PATH /home/batman/openpilot
|
||||
ENV PYTHONPATH ${OPENPILOT_PATH}:${PYTHONPATH}
|
||||
ENV OPENPILOT_PATH=/home/batman/openpilot
|
||||
ENV PYTHONPATH=${OPENPILOT_PATH}:${PYTHONPATH}
|
||||
|
||||
RUN mkdir -p ${OPENPILOT_PATH}
|
||||
WORKDIR ${OPENPILOT_PATH}
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
FROM ubuntu:24.04
|
||||
|
||||
ENV PYTHONUNBUFFERED 1
|
||||
ENV PYTHONUNBUFFERED=1
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
RUN apt-get update && \
|
||||
@@ -8,9 +8,9 @@ RUN apt-get update && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN sed -i -e 's/# en_US.UTF-8 UTF-8/en_US.UTF-8 UTF-8/' /etc/locale.gen && locale-gen
|
||||
ENV LANG en_US.UTF-8
|
||||
ENV LANGUAGE en_US:en
|
||||
ENV LC_ALL en_US.UTF-8
|
||||
ENV LANG=en_US.UTF-8
|
||||
ENV LANGUAGE=en_US:en
|
||||
ENV LC_ALL=en_US.UTF-8
|
||||
|
||||
COPY tools/install_ubuntu_dependencies.sh /tmp/tools/
|
||||
RUN /tmp/tools/install_ubuntu_dependencies.sh && \
|
||||
@@ -55,9 +55,9 @@ RUN mkdir -p /tmp/opencl-driver-intel && \
|
||||
cd / && \
|
||||
rm -rf /tmp/opencl-driver-intel
|
||||
|
||||
ENV NVIDIA_VISIBLE_DEVICES all
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES graphics,utility,compute
|
||||
ENV QTWEBENGINE_DISABLE_SANDBOX 1
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=graphics,utility,compute
|
||||
ENV QTWEBENGINE_DISABLE_SANDBOX=1
|
||||
|
||||
RUN dbus-uuidgen > /etc/machine-id
|
||||
|
||||
|
||||
9
Jenkinsfile
vendored
9
Jenkinsfile
vendored
@@ -79,6 +79,10 @@ def deviceStage(String stageName, String deviceType, List extra_env, def steps)
|
||||
return
|
||||
}
|
||||
|
||||
if (isReplay()) {
|
||||
error("REPLAYING TESTS IS NOT ALLOWED. FIX THEM INSTEAD.")
|
||||
}
|
||||
|
||||
def extra = extra_env.collect { "export ${it}" }.join('\n');
|
||||
def branch = env.BRANCH_NAME ?: 'master';
|
||||
def gitDiff = sh returnStdout: true, script: 'curl -s -H "Authorization: Bearer ${GITHUB_COMMENTS_TOKEN}" https://api.github.com/repos/commaai/openpilot/compare/master...${GIT_BRANCH} | jq .files[].filename || echo "/"', label: 'Getting changes'
|
||||
@@ -123,6 +127,11 @@ def hasPathChanged(String gitDiff, List<String> paths) {
|
||||
return false
|
||||
}
|
||||
|
||||
def isReplay() {
|
||||
def replayClass = "org.jenkinsci.plugins.workflow.cps.replay.ReplayCause"
|
||||
return currentBuild.rawBuild.getCauses().any{ cause -> cause.toString().contains(replayClass) }
|
||||
}
|
||||
|
||||
def setupCredentials() {
|
||||
withCredentials([
|
||||
string(credentialsId: 'azure_token', variable: 'AZURE_TOKEN'),
|
||||
|
||||
11
README.md
11
README.md
@@ -38,7 +38,8 @@ Quick start: `bash <(curl -fsSL openpilot.comma.ai)`
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
To start using openpilot in a car
|
||||
|
||||
Using openpilot in a car
|
||||
------
|
||||
|
||||
To use openpilot in a car, you need four things:
|
||||
@@ -49,6 +50,14 @@ To use openpilot in a car, you need four things:
|
||||
|
||||
We have detailed instructions for [how to install the harness and device in a car](https://comma.ai/setup). Note that it's possible to run openpilot on [other hardware](https://blog.comma.ai/self-driving-car-for-free/), although it's not plug-and-play.
|
||||
|
||||
### Branches
|
||||
| branch | URL | description |
|
||||
|------------------|----------------------------------------|-------------------------------------------------------------------------------------|
|
||||
| `release3` | openilot.comma.ai | This is openpilot's release branch. |
|
||||
| `release3-staging` | openpilot-test.comma.ai | This is the staging branch for releases. Use it to get new releases slightly early. |
|
||||
| `nightly` | openpilot-nightly.comma.ai | This is the bleeding edge development branch. Do not expect this to be stable. |
|
||||
| `nightly-dev` | installer.comma.ai/commaai/nightly-dev | Same as nightly, but includes experimental development features for some cars. |
|
||||
|
||||
To start developing openpilot
|
||||
------
|
||||
|
||||
|
||||
@@ -2516,6 +2516,14 @@ struct Microphone {
|
||||
filteredSoundPressureWeightedDb @2 :Float32;
|
||||
}
|
||||
|
||||
struct Touch {
|
||||
sec @0 :Int64;
|
||||
usec @1 :Int64;
|
||||
type @2 :UInt8;
|
||||
code @3 :Int32;
|
||||
value @4 :Int32;
|
||||
}
|
||||
|
||||
struct Event {
|
||||
logMonoTime @0 :UInt64; # nanoseconds
|
||||
valid @67 :Bool = true;
|
||||
@@ -2596,6 +2604,9 @@ struct Event {
|
||||
logMessage @18 :Text;
|
||||
errorLogMessage @85 :Text;
|
||||
|
||||
# touch frame
|
||||
touch @135 :List(Touch);
|
||||
|
||||
# navigation
|
||||
navInstruction @82 :NavInstruction;
|
||||
navRoute @83 :NavRoute;
|
||||
|
||||
@@ -22,6 +22,7 @@ _services: dict[str, tuple] = {
|
||||
"temperatureSensor2": (True, 2., 200),
|
||||
"gpsNMEA": (True, 9.),
|
||||
"deviceState": (True, 2., 1),
|
||||
"touch": (True, 20., 1),
|
||||
"can": (True, 100., 2053), # decimation gives ~3 msgs in a full segment
|
||||
"controlsState": (True, 100., 10),
|
||||
"selfdriveState": (True, 100., 10),
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import numpy as np
|
||||
|
||||
from openpilot.common.transformations.orientation import rot_from_euler
|
||||
from openpilot.common.transformations.camera import get_view_frame_from_calib_frame, view_frame_from_device_frame
|
||||
from openpilot.common.transformations.camera import get_view_frame_from_calib_frame, view_frame_from_device_frame, _ar_ox_fisheye
|
||||
|
||||
# segnet
|
||||
SEGNET_SIZE = (512, 384)
|
||||
@@ -39,6 +39,13 @@ sbigmodel_intrinsics = np.array([
|
||||
[0.0, sbigmodel_fl, 0.5 * (256 + MEDMODEL_CY)],
|
||||
[0.0, 0.0, 1.0]])
|
||||
|
||||
DM_INPUT_SIZE = (1440, 960)
|
||||
dmonitoringmodel_fl = _ar_ox_fisheye.focal_length
|
||||
dmonitoringmodel_intrinsics = np.array([
|
||||
[dmonitoringmodel_fl, 0.0, DM_INPUT_SIZE[0]/2],
|
||||
[0.0, dmonitoringmodel_fl, DM_INPUT_SIZE[1]/2 - (_ar_ox_fisheye.height - DM_INPUT_SIZE[1])/2],
|
||||
[0.0, 0.0, 1.0]])
|
||||
|
||||
bigmodel_frame_from_calib_frame = np.dot(bigmodel_intrinsics,
|
||||
get_view_frame_from_calib_frame(0, 0, 0, 0))
|
||||
|
||||
|
||||
@@ -103,7 +103,7 @@ A supported vehicle is one that just works when you install a comma device. All
|
||||
|Hyundai|Ioniq Plug-in Hybrid 2020-22|All|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[](##)|[](##)|<details><summary>Parts</summary><sub>- 1 Hyundai H connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Hyundai&model=Ioniq Plug-in Hybrid 2020-22">Buy Here</a></sub></details>||
|
||||
|Hyundai|Kona 2020|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|6 mph|0 mph|[](##)|[](##)|<details><summary>Parts</summary><sub>- 1 Hyundai B connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Hyundai&model=Kona 2020">Buy Here</a></sub></details>||
|
||||
|Hyundai|Kona Electric 2018-21|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[](##)|[](##)|<details><summary>Parts</summary><sub>- 1 Hyundai G connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Hyundai&model=Kona Electric 2018-21">Buy Here</a></sub></details>||
|
||||
|Hyundai|Kona Electric 2022-23|Smart Cruise Control (SCC)|Stock|0 mph|0 mph|[](##)|[](##)|<details><summary>Parts</summary><sub>- 1 Hyundai O connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Hyundai&model=Kona Electric 2022-23">Buy Here</a></sub></details>||
|
||||
|Hyundai|Kona Electric 2022-23|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[](##)|[](##)|<details><summary>Parts</summary><sub>- 1 Hyundai O connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Hyundai&model=Kona Electric 2022-23">Buy Here</a></sub></details>||
|
||||
|Hyundai|Kona Electric (with HDA II, Korea only) 2023[<sup>5</sup>](#footnotes)|Smart Cruise Control (SCC)|Stock|0 mph|0 mph|[](##)|[](##)|<details><summary>Parts</summary><sub>- 1 Hyundai R connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Hyundai&model=Kona Electric (with HDA II, Korea only) 2023">Buy Here</a></sub></details>|<a href="https://www.youtube.com/watch?v=U2fOCmcQ8hw" target="_blank"><img height="18px" src="assets/icon-youtube.svg"></img></a>|
|
||||
|Hyundai|Kona Hybrid 2020|Smart Cruise Control (SCC)|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[](##)|[](##)|<details><summary>Parts</summary><sub>- 1 Hyundai I connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Hyundai&model=Kona Hybrid 2020">Buy Here</a></sub></details>||
|
||||
|Hyundai|Palisade 2020-22|All|openpilot available[<sup>1</sup>](#footnotes)|0 mph|0 mph|[](##)|[](##)|<details><summary>Parts</summary><sub>- 1 Hyundai H connector<br>- 1 RJ45 cable (7 ft)<br>- 1 comma 3X<br>- 1 comma power v2<br>- 1 harness box<br>- 1 mount<br>- 1 right angle OBD-C cable (1.5 ft)<br><a href="https://comma.ai/shop/comma-3x.html?make=Hyundai&model=Palisade 2020-22">Buy Here</a></sub></details>|<a href="https://youtu.be/TAnDqjF4fDY?t=456" target="_blank"><img height="18px" src="assets/icon-youtube.svg"></img></a>|
|
||||
|
||||
44
docs/css/tooltip.css
Normal file
44
docs/css/tooltip.css
Normal file
@@ -0,0 +1,44 @@
|
||||
[data-tooltip] {
|
||||
position: relative;
|
||||
display: inline-block;
|
||||
border-bottom: 1px dotted black;
|
||||
}
|
||||
|
||||
[data-tooltip] .tooltip-content {
|
||||
width: max-content;
|
||||
max-width: 25em;
|
||||
position: absolute;
|
||||
top: 100%;
|
||||
left: 50%;
|
||||
transform: translateX(-50%);
|
||||
background-color: white;
|
||||
color: #404040;
|
||||
box-shadow: 0 4px 14px 0 rgba(0,0,0,.2), 0 0 0 1px rgba(0,0,0,.05);
|
||||
padding: 10px;
|
||||
font: 14px/1.5 Lato, proxima-nova, Helvetica Neue, Arial, sans-serif;
|
||||
text-decoration: none;
|
||||
opacity: 0;
|
||||
visibility: hidden;
|
||||
transition: opacity 0.1s, visibility 0s;
|
||||
z-index: 1000;
|
||||
pointer-events: none; /* Prevent accidental interaction */
|
||||
}
|
||||
|
||||
[data-tooltip]:hover .tooltip-content {
|
||||
opacity: 1;
|
||||
visibility: visible;
|
||||
pointer-events: auto; /* Allow interaction when visible */
|
||||
}
|
||||
|
||||
.tooltip-content .tooltip-glossary-link {
|
||||
display: inline-block;
|
||||
margin-top: 8px;
|
||||
font-size: 12px;
|
||||
color: #007bff;
|
||||
text-decoration: none;
|
||||
}
|
||||
|
||||
.tooltip-content .tooltip-glossary-link:hover {
|
||||
color: #0056b3;
|
||||
text-decoration: underline;
|
||||
}
|
||||
0
docs/glossary.toml
Normal file
0
docs/glossary.toml
Normal file
68
docs/hooks/glossary.py
Normal file
68
docs/hooks/glossary.py
Normal file
@@ -0,0 +1,68 @@
|
||||
import re
|
||||
import tomllib
|
||||
|
||||
def load_glossary(file_path="docs/glossary.toml"):
|
||||
with open(file_path, "rb") as f:
|
||||
glossary_data = tomllib.load(f)
|
||||
return glossary_data.get("glossary", {})
|
||||
|
||||
def generate_anchor_id(name):
|
||||
return name.replace(" ", "-").replace("_", "-").lower()
|
||||
|
||||
def format_markdown_term(name, definition):
|
||||
anchor_id = generate_anchor_id(name)
|
||||
markdown = f"* [**{name.replace('_', ' ').title()}**](#{anchor_id})"
|
||||
if definition.get("abbreviation"):
|
||||
markdown += f" *({definition['abbreviation']})*"
|
||||
if definition.get("description"):
|
||||
markdown += f": {definition['description']}\n"
|
||||
return markdown
|
||||
|
||||
def glossary_markdown(vocabulary):
|
||||
markdown = ""
|
||||
for category, terms in vocabulary.items():
|
||||
markdown += f"## {category.replace('_', ' ').title()}\n\n"
|
||||
for name, definition in terms.items():
|
||||
markdown += format_markdown_term(name, definition)
|
||||
return markdown
|
||||
|
||||
def format_tooltip_html(term_key, definition, html):
|
||||
display_term = term_key.replace("_", " ").title()
|
||||
clean_description = re.sub(r"\[(.+)]\(.+\)", r"\1", definition["description"])
|
||||
glossary_link = (
|
||||
f"<a href='/concepts/glossary#{term_key}' class='tooltip-glossary-link' title='View in glossary'>Glossary🔗</a>"
|
||||
)
|
||||
return re.sub(
|
||||
re.escape(display_term),
|
||||
lambda
|
||||
match: f"<span data-tooltip>{match.group(0)}<span class='tooltip-content'>{clean_description} {glossary_link}</span></span>",
|
||||
html,
|
||||
flags=re.IGNORECASE,
|
||||
)
|
||||
|
||||
def apply_tooltip(_term_key, _definition, pattern, html):
|
||||
return re.sub(
|
||||
pattern,
|
||||
lambda match: format_tooltip_html(_term_key, _definition, match.group(0)),
|
||||
html,
|
||||
flags=re.IGNORECASE,
|
||||
)
|
||||
|
||||
def tooltip_html(vocabulary, html):
|
||||
for _category, terms in vocabulary.items():
|
||||
for term_key, definition in terms.items():
|
||||
if definition.get("description"):
|
||||
pattern = rf"(?<!\w){re.escape(term_key.replace('_', ' ').title())}(?![^<]*<\/a>)(?!\([^)]*\))"
|
||||
html = apply_tooltip(term_key, definition, pattern, html)
|
||||
return html
|
||||
|
||||
# Page Hooks
|
||||
def on_page_markdown(markdown, **kwargs):
|
||||
glossary = load_glossary()
|
||||
return markdown.replace("{{GLOSSARY_DEFINITIONS}}", glossary_markdown(glossary))
|
||||
|
||||
def on_page_content(html, **kwargs):
|
||||
if kwargs.get("page").title == "Glossary":
|
||||
return html
|
||||
glossary = load_glossary()
|
||||
return tooltip_html(glossary, html)
|
||||
@@ -7,7 +7,7 @@ export OPENBLAS_NUM_THREADS=1
|
||||
export VECLIB_MAXIMUM_THREADS=1
|
||||
|
||||
if [ -z "$AGNOS_VERSION" ]; then
|
||||
export AGNOS_VERSION="11.3"
|
||||
export AGNOS_VERSION="11.4"
|
||||
fi
|
||||
|
||||
export STAGING_ROOT="/data/safe_staging"
|
||||
|
||||
@@ -8,6 +8,10 @@ strict: true
|
||||
docs_dir: docs
|
||||
site_dir: docs_site/
|
||||
|
||||
hooks:
|
||||
- docs/hooks/glossary.py
|
||||
extra_css:
|
||||
- css/tooltip.css
|
||||
theme:
|
||||
name: readthedocs
|
||||
navigation_depth: 3
|
||||
|
||||
Submodule opendbc_repo updated: 5d399457c8...26451f9839
2
panda
2
panda
Submodule panda updated: 3ae376ecfe...45301bf15c
@@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:f7565541b4e6213221174839b9b2b67397ced0b9807ea56413989fd37325b3b6
|
||||
size 4908
|
||||
@@ -148,7 +148,8 @@ class CarSpecificEvents:
|
||||
# To avoid re-engaging when openpilot cancels, check user engagement intention via buttons
|
||||
# Main button also can trigger an engagement on these cars
|
||||
self.cruise_buttons.append(any(ev.type in HYUNDAI_ENABLE_BUTTONS for ev in CS.buttonEvents))
|
||||
events = self.create_common_events(CS, CS_prev, pcm_enable=self.CP.pcmCruise, allow_enable=any(self.cruise_buttons))
|
||||
events = self.create_common_events(CS, CS_prev, extra_gears=(GearShifter.sport, GearShifter.manumatic),
|
||||
pcm_enable=self.CP.pcmCruise, allow_enable=any(self.cruise_buttons))
|
||||
|
||||
# low speed steer alert hysteresis logic (only for cars with steer cut off above 10 m/s)
|
||||
if CS.vEgo < (self.CP.minSteerSpeed + 2.) and self.CP.minSteerSpeed > 10.:
|
||||
|
||||
@@ -17,7 +17,7 @@ class TestCarDocs:
|
||||
with open(CARS_MD_OUT) as f:
|
||||
current_cars_md = f.read()
|
||||
|
||||
assert generated_cars_md == current_cars_md, "Run selfdrive/opcar/docs.py to update the compatibility documentation"
|
||||
assert generated_cars_md == current_cars_md, "Run selfdrive/car/docs.py to update the compatibility documentation"
|
||||
|
||||
def test_docs_diff(self):
|
||||
dump_path = os.path.join(BASEDIR, "selfdrive", "car", "tests", "cars_dump")
|
||||
|
||||
@@ -5,12 +5,15 @@ from openpilot.common.realtime import DT_CTRL
|
||||
MIN_SPEED = 1.0
|
||||
CONTROL_N = 17
|
||||
CAR_ROTATION_RADIUS = 0.0
|
||||
# This is a turn radius smaller than most cars can achieve
|
||||
MAX_CURVATURE = 0.2
|
||||
|
||||
# EU guidelines
|
||||
MAX_LATERAL_JERK = 5.0
|
||||
MAX_VEL_ERR = 5.0
|
||||
|
||||
def clip_curvature(v_ego, prev_curvature, new_curvature):
|
||||
new_curvature = clip(new_curvature, -MAX_CURVATURE, MAX_CURVATURE)
|
||||
v_ego = max(MIN_SPEED, v_ego)
|
||||
max_curvature_rate = MAX_LATERAL_JERK / (v_ego**2) # inexact calculation, check https://github.com/commaai/openpilot/pull/24755
|
||||
safe_desired_curvature = clip(new_curvature,
|
||||
|
||||
48
selfdrive/debug/touch_replay.py
Executable file
48
selfdrive/debug/touch_replay.py
Executable file
@@ -0,0 +1,48 @@
|
||||
#!/usr/bin/env python3
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from openpilot.tools.lib.logreader import LogReader
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--width', default=2160, type=int)
|
||||
parser.add_argument('--height', default=1080, type=int)
|
||||
parser.add_argument('--route', default='rlog', type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
w = args.width
|
||||
h = args.height
|
||||
route = args.route
|
||||
|
||||
fingers = [[-1, -1]] * 5
|
||||
touch_points = []
|
||||
current_slot = 0
|
||||
|
||||
lr = list(LogReader(route))
|
||||
for msg in lr:
|
||||
if msg.which() == 'touch':
|
||||
for event in msg.touch:
|
||||
if event.type == 3 and event.code == 47:
|
||||
current_slot = event.value
|
||||
elif event.type == 3 and event.code == 57 and event.value == -1:
|
||||
fingers[current_slot] = [-1, -1]
|
||||
elif event.type == 3 and event.code == 53:
|
||||
fingers[current_slot][1] = h - (h - event.value)
|
||||
if fingers[current_slot][0] != -1:
|
||||
touch_points.append(fingers[current_slot].copy())
|
||||
elif event.type == 3 and event.code == 54:
|
||||
fingers[current_slot][0] = w - event.value
|
||||
if fingers[current_slot][1] != -1:
|
||||
touch_points.append(fingers[current_slot].copy())
|
||||
|
||||
unique_points, counts = np.unique(touch_points, axis=0, return_counts=True)
|
||||
|
||||
plt.figure(figsize=(10, 3))
|
||||
plt.scatter(unique_points[:, 0], unique_points[:, 1], c=counts, s=counts * 20, edgecolors='red')
|
||||
plt.colorbar()
|
||||
plt.title(f'Touches for {route}')
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
@@ -13,13 +13,13 @@ from cereal.messaging import PubMaster, SubMaster
|
||||
from msgq.visionipc import VisionIpcClient, VisionStreamType, VisionBuf
|
||||
from openpilot.common.swaglog import cloudlog
|
||||
from openpilot.common.realtime import set_realtime_priority
|
||||
from openpilot.common.transformations.model import dmonitoringmodel_intrinsics
|
||||
from openpilot.common.transformations.camera import _ar_ox_fisheye, _os_fisheye
|
||||
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext, MonitoringModelFrame
|
||||
from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
|
||||
from openpilot.selfdrive.modeld.models.commonmodel_pyx import CLContext
|
||||
from openpilot.selfdrive.modeld.parse_model_outputs import sigmoid
|
||||
|
||||
CALIB_LEN = 3
|
||||
MODEL_WIDTH = 1440
|
||||
MODEL_HEIGHT = 960
|
||||
FEATURE_LEN = 512
|
||||
OUTPUT_SIZE = 84 + FEATURE_LEN
|
||||
|
||||
@@ -62,25 +62,21 @@ class ModelState:
|
||||
|
||||
def __init__(self, cl_ctx):
|
||||
assert ctypes.sizeof(DMonitoringModelResult) == OUTPUT_SIZE * ctypes.sizeof(ctypes.c_float)
|
||||
|
||||
self.frame = MonitoringModelFrame(cl_ctx)
|
||||
self.output = np.zeros(OUTPUT_SIZE, dtype=np.float32)
|
||||
self.inputs = {
|
||||
'input_img': np.zeros(MODEL_HEIGHT * MODEL_WIDTH, dtype=np.uint8),
|
||||
'calib': np.zeros(CALIB_LEN, dtype=np.float32)}
|
||||
|
||||
self.model = ModelRunner(MODEL_PATHS, self.output, Runtime.GPU, False, cl_ctx)
|
||||
self.model.addInput("input_img", None)
|
||||
self.model.addInput("calib", self.inputs['calib'])
|
||||
|
||||
def run(self, buf:VisionBuf, calib:np.ndarray) -> tuple[np.ndarray, float]:
|
||||
def run(self, buf:VisionBuf, calib:np.ndarray, transform:np.ndarray) -> tuple[np.ndarray, float]:
|
||||
self.inputs['calib'][:] = calib
|
||||
|
||||
v_offset = buf.height - MODEL_HEIGHT
|
||||
h_offset = (buf.width - MODEL_WIDTH) // 2
|
||||
buf_data = buf.data.reshape(-1, buf.stride)
|
||||
input_data = self.inputs['input_img'].reshape(MODEL_HEIGHT, MODEL_WIDTH)
|
||||
input_data[:] = buf_data[v_offset:v_offset+MODEL_HEIGHT, h_offset:h_offset+MODEL_WIDTH]
|
||||
self.model.setInputBuffer("input_img", self.frame.prepare(buf, transform.flatten(), None).view(np.float32))
|
||||
|
||||
self.model.setInputBuffer("input_img", self.inputs['input_img'].view(np.float32))
|
||||
t1 = time.perf_counter()
|
||||
self.model.execute()
|
||||
t2 = time.perf_counter()
|
||||
@@ -137,18 +133,23 @@ def main():
|
||||
pm = PubMaster(["driverStateV2"])
|
||||
|
||||
calib = np.zeros(CALIB_LEN, dtype=np.float32)
|
||||
model_transform = None
|
||||
|
||||
while True:
|
||||
buf = vipc_client.recv()
|
||||
if buf is None:
|
||||
continue
|
||||
|
||||
if model_transform is None:
|
||||
cam = _os_fisheye if buf.width == _os_fisheye.width else _ar_ox_fisheye
|
||||
model_transform = np.linalg.inv(np.dot(dmonitoringmodel_intrinsics, np.linalg.inv(cam.intrinsics))).astype(np.float32)
|
||||
|
||||
sm.update(0)
|
||||
if sm.updated["liveCalibration"]:
|
||||
calib[:] = np.array(sm["liveCalibration"].rpyCalib)
|
||||
|
||||
t1 = time.perf_counter()
|
||||
model_output, gpu_execution_time = model.run(buf, calib)
|
||||
model_output, gpu_execution_time = model.run(buf, calib, model_transform)
|
||||
t2 = time.perf_counter()
|
||||
|
||||
pm.send("driverStateV2", get_driverstate_packet(model_output, vipc_client.frame_id, vipc_client.timestamp_sof, t2 - t1, gpu_execution_time))
|
||||
|
||||
@@ -3,11 +3,22 @@ import capnp
|
||||
import numpy as np
|
||||
from cereal import log
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants, Plan, Meta
|
||||
from openpilot.selfdrive.controls.lib.drive_helpers import MIN_SPEED
|
||||
|
||||
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
|
||||
|
||||
ConfidenceClass = log.ModelDataV2.ConfidenceClass
|
||||
|
||||
def curv_from_psis(psi_target, psi_rate, vego, delay):
|
||||
vego = np.clip(vego, MIN_SPEED, np.inf)
|
||||
curv_from_psi = psi_target / (vego * delay) # epsilon to prevent divide-by-zero
|
||||
return 2*curv_from_psi - psi_rate / vego
|
||||
|
||||
def get_curvature_from_plan(plan, vego, delay):
|
||||
psi_target = np.interp(delay, ModelConstants.T_IDXS, plan[:, Plan.T_FROM_CURRENT_EULER][:, 2])
|
||||
psi_rate = plan[:, Plan.ORIENTATION_RATE][0, 2]
|
||||
return curv_from_psis(psi_target, psi_rate, vego, delay)
|
||||
|
||||
class PublishState:
|
||||
def __init__(self):
|
||||
self.disengage_buffer = np.zeros(ModelConstants.CONFIDENCE_BUFFER_LEN*ModelConstants.DISENGAGE_WIDTH, dtype=np.float32)
|
||||
@@ -55,14 +66,17 @@ def fill_lane_line_meta(builder, lane_lines, lane_line_probs):
|
||||
builder.rightProb = lane_line_probs[2]
|
||||
|
||||
def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._DynamicStructBuilder,
|
||||
net_output_data: dict[str, np.ndarray], publish_state: PublishState,
|
||||
vipc_frame_id: int, vipc_frame_id_extra: int, frame_id: int, frame_drop: float,
|
||||
timestamp_eof: int, model_execution_time: float, valid: bool) -> None:
|
||||
net_output_data: dict[str, np.ndarray], v_ego: float, delay: float,
|
||||
publish_state: PublishState, vipc_frame_id: int, vipc_frame_id_extra: int,
|
||||
frame_id: int, frame_drop: float, timestamp_eof: int, model_execution_time: float,
|
||||
valid: bool) -> None:
|
||||
frame_age = frame_id - vipc_frame_id if frame_id > vipc_frame_id else 0
|
||||
frame_drop_perc = frame_drop * 100
|
||||
extended_msg.valid = valid
|
||||
base_msg.valid = valid
|
||||
|
||||
desired_curv = float(get_curvature_from_plan(net_output_data['plan'][0], v_ego, delay))
|
||||
|
||||
driving_model_data = base_msg.drivingModelData
|
||||
|
||||
driving_model_data.frameId = vipc_frame_id
|
||||
@@ -71,7 +85,7 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D
|
||||
driving_model_data.modelExecutionTime = model_execution_time
|
||||
|
||||
action = driving_model_data.action
|
||||
action.desiredCurvature = float(net_output_data['desired_curvature'][0,0])
|
||||
action.desiredCurvature = desired_curv
|
||||
|
||||
modelV2 = extended_msg.modelV2
|
||||
modelV2.frameId = vipc_frame_id
|
||||
@@ -106,7 +120,7 @@ def fill_model_msg(base_msg: capnp._DynamicStructBuilder, extended_msg: capnp._D
|
||||
|
||||
# lateral planning
|
||||
action = modelV2.action
|
||||
action.desiredCurvature = float(net_output_data['desired_curvature'][0,0])
|
||||
action.desiredCurvature = desired_curv
|
||||
|
||||
# times at X_IDXS according to model plan
|
||||
PLAN_T_IDXS = [np.nan] * ModelConstants.IDX_N
|
||||
|
||||
@@ -22,7 +22,7 @@ from openpilot.selfdrive.modeld.runners import ModelRunner, Runtime
|
||||
from openpilot.selfdrive.modeld.parse_model_outputs import Parser
|
||||
from openpilot.selfdrive.modeld.fill_model_msg import fill_model_msg, fill_pose_msg, PublishState
|
||||
from openpilot.selfdrive.modeld.constants import ModelConstants
|
||||
from openpilot.selfdrive.modeld.models.commonmodel_pyx import ModelFrame, CLContext
|
||||
from openpilot.selfdrive.modeld.models.commonmodel_pyx import DrivingModelFrame, CLContext
|
||||
|
||||
PROCESS_NAME = "selfdrive.modeld.modeld"
|
||||
SEND_RAW_PRED = os.getenv('SEND_RAW_PRED')
|
||||
@@ -44,27 +44,24 @@ class FrameMeta:
|
||||
self.frame_id, self.timestamp_sof, self.timestamp_eof = vipc.frame_id, vipc.timestamp_sof, vipc.timestamp_eof
|
||||
|
||||
class ModelState:
|
||||
frame: ModelFrame
|
||||
wide_frame: ModelFrame
|
||||
frame: DrivingModelFrame
|
||||
wide_frame: DrivingModelFrame
|
||||
inputs: dict[str, np.ndarray]
|
||||
output: np.ndarray
|
||||
prev_desire: np.ndarray # for tracking the rising edge of the pulse
|
||||
model: ModelRunner
|
||||
|
||||
def __init__(self, context: CLContext):
|
||||
self.frame = ModelFrame(context)
|
||||
self.wide_frame = ModelFrame(context)
|
||||
self.frame = DrivingModelFrame(context)
|
||||
self.wide_frame = DrivingModelFrame(context)
|
||||
self.prev_desire = np.zeros(ModelConstants.DESIRE_LEN, dtype=np.float32)
|
||||
self.full_features_20Hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN, ModelConstants.FEATURE_LEN), dtype=np.float32)
|
||||
self.desire_20Hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN + 1, ModelConstants.DESIRE_LEN), dtype=np.float32)
|
||||
self.prev_desired_curv_20hz = np.zeros((ModelConstants.FULL_HISTORY_BUFFER_LEN + 1, ModelConstants.PREV_DESIRED_CURV_LEN), dtype=np.float32)
|
||||
|
||||
# img buffers are managed in openCL transform code
|
||||
self.inputs = {
|
||||
'desire': np.zeros(ModelConstants.DESIRE_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
|
||||
'traffic_convention': np.zeros(ModelConstants.TRAFFIC_CONVENTION_LEN, dtype=np.float32),
|
||||
'lateral_control_params': np.zeros(ModelConstants.LATERAL_CONTROL_PARAMS_LEN, dtype=np.float32),
|
||||
'prev_desired_curv': np.zeros(ModelConstants.PREV_DESIRED_CURV_LEN * (ModelConstants.HISTORY_BUFFER_LEN+1), dtype=np.float32),
|
||||
'features_buffer': np.zeros(ModelConstants.HISTORY_BUFFER_LEN * ModelConstants.FEATURE_LEN, dtype=np.float32),
|
||||
}
|
||||
|
||||
@@ -100,7 +97,6 @@ class ModelState:
|
||||
self.inputs['desire'][:] = self.desire_20Hz.reshape((25,4,-1)).max(axis=1).flatten()
|
||||
|
||||
self.inputs['traffic_convention'][:] = inputs['traffic_convention']
|
||||
self.inputs['lateral_control_params'][:] = inputs['lateral_control_params']
|
||||
|
||||
self.model.setInputBuffer("input_imgs", self.frame.prepare(buf, transform.flatten(), self.model.getCLBuffer("input_imgs")))
|
||||
self.model.setInputBuffer("big_input_imgs", self.wide_frame.prepare(wbuf, transform_wide.flatten(), self.model.getCLBuffer("big_input_imgs")))
|
||||
@@ -114,13 +110,8 @@ class ModelState:
|
||||
self.full_features_20Hz[:-1] = self.full_features_20Hz[1:]
|
||||
self.full_features_20Hz[-1] = outputs['hidden_state'][0, :]
|
||||
|
||||
self.prev_desired_curv_20hz[:-1] = self.prev_desired_curv_20hz[1:]
|
||||
self.prev_desired_curv_20hz[-1] = outputs['desired_curvature'][0, :]
|
||||
|
||||
idxs = np.arange(-4,-100,-4)[::-1]
|
||||
self.inputs['features_buffer'][:] = self.full_features_20Hz[idxs].flatten()
|
||||
# TODO model only uses last value now, once that changes we need to input strided action history buffer
|
||||
self.inputs['prev_desired_curv'][-ModelConstants.PREV_DESIRED_CURV_LEN:] = 0. * self.prev_desired_curv_20hz[-4, :]
|
||||
return outputs
|
||||
|
||||
|
||||
@@ -231,7 +222,6 @@ def main(demo=False):
|
||||
is_rhd = sm["driverMonitoringState"].isRHD
|
||||
frame_id = sm["roadCameraState"].frameId
|
||||
v_ego = max(sm["carState"].vEgo, 0.)
|
||||
lateral_control_params = np.array([v_ego, steer_delay], dtype=np.float32)
|
||||
if sm.updated["liveCalibration"] and sm.seen['roadCameraState'] and sm.seen['deviceState']:
|
||||
device_from_calib_euler = np.array(sm["liveCalibration"].rpyCalib, dtype=np.float32)
|
||||
dc = DEVICE_CAMERAS[(str(sm['deviceState'].deviceType), str(sm['roadCameraState'].sensor))]
|
||||
@@ -262,7 +252,6 @@ def main(demo=False):
|
||||
inputs:dict[str, np.ndarray] = {
|
||||
'desire': vec_desire,
|
||||
'traffic_convention': traffic_convention,
|
||||
'lateral_control_params': lateral_control_params,
|
||||
}
|
||||
|
||||
mt1 = time.perf_counter()
|
||||
@@ -274,7 +263,8 @@ def main(demo=False):
|
||||
modelv2_send = messaging.new_message('modelV2')
|
||||
drivingdata_send = messaging.new_message('drivingModelData')
|
||||
posenet_send = messaging.new_message('cameraOdometry')
|
||||
fill_model_msg(drivingdata_send, modelv2_send, model_output, publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id,
|
||||
fill_model_msg(drivingdata_send, modelv2_send, model_output, v_ego, steer_delay,
|
||||
publish_state, meta_main.frame_id, meta_extra.frame_id, frame_id,
|
||||
frame_drop_ratio, meta_main.timestamp_eof, model_execution_time, live_calib_seen)
|
||||
|
||||
desire_state = modelv2_send.modelV2.meta.desireState
|
||||
|
||||
@@ -1,36 +1,30 @@
|
||||
#include "selfdrive/modeld/models/commonmodel.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
|
||||
#include "common/clutil.h"
|
||||
|
||||
ModelFrame::ModelFrame(cl_device_id device_id, cl_context context) {
|
||||
DrivingModelFrame::DrivingModelFrame(cl_device_id device_id, cl_context context) : ModelFrame(device_id, context) {
|
||||
input_frames = std::make_unique<uint8_t[]>(buf_size);
|
||||
|
||||
q = CL_CHECK_ERR(clCreateCommandQueue(context, device_id, 0, &err));
|
||||
y_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, MODEL_WIDTH * MODEL_HEIGHT, NULL, &err));
|
||||
u_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, (MODEL_WIDTH / 2) * (MODEL_HEIGHT / 2), NULL, &err));
|
||||
v_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, (MODEL_WIDTH / 2) * (MODEL_HEIGHT / 2), NULL, &err));
|
||||
//input_frames_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, buf_size, NULL, &err));
|
||||
img_buffer_20hz_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, 5*frame_size_bytes, NULL, &err));
|
||||
region.origin = 4 * frame_size_bytes;
|
||||
region.size = frame_size_bytes;
|
||||
last_img_cl = CL_CHECK_ERR(clCreateSubBuffer(img_buffer_20hz_cl, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err));
|
||||
|
||||
transform_init(&transform, context, device_id);
|
||||
loadyuv_init(&loadyuv, context, device_id, MODEL_WIDTH, MODEL_HEIGHT);
|
||||
init_transform(device_id, context, MODEL_WIDTH, MODEL_HEIGHT);
|
||||
}
|
||||
|
||||
uint8_t* ModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3 &projection, cl_mem *output) {
|
||||
transform_queue(&this->transform, q,
|
||||
yuv_cl, frame_width, frame_height, frame_stride, frame_uv_offset,
|
||||
y_cl, u_cl, v_cl, MODEL_WIDTH, MODEL_HEIGHT, projection);
|
||||
uint8_t* DrivingModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection, cl_mem* output) {
|
||||
run_transform(yuv_cl, MODEL_WIDTH, MODEL_HEIGHT, frame_width, frame_height, frame_stride, frame_uv_offset, projection);
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
CL_CHECK(clEnqueueCopyBuffer(q, img_buffer_20hz_cl, img_buffer_20hz_cl, (i+1)*frame_size_bytes, i*frame_size_bytes, frame_size_bytes, 0, nullptr, nullptr));
|
||||
}
|
||||
loadyuv_queue(&loadyuv, q, y_cl, u_cl, v_cl, last_img_cl);
|
||||
|
||||
if (output == NULL) {
|
||||
CL_CHECK(clEnqueueReadBuffer(q, img_buffer_20hz_cl, CL_TRUE, 0, frame_size_bytes, &input_frames[0], 0, nullptr, nullptr));
|
||||
CL_CHECK(clEnqueueReadBuffer(q, last_img_cl, CL_TRUE, 0, frame_size_bytes, &input_frames[MODEL_FRAME_SIZE], 0, nullptr, nullptr));
|
||||
@@ -46,13 +40,30 @@ uint8_t* ModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, i
|
||||
}
|
||||
}
|
||||
|
||||
ModelFrame::~ModelFrame() {
|
||||
transform_destroy(&transform);
|
||||
DrivingModelFrame::~DrivingModelFrame() {
|
||||
deinit_transform();
|
||||
loadyuv_destroy(&loadyuv);
|
||||
CL_CHECK(clReleaseMemObject(img_buffer_20hz_cl));
|
||||
CL_CHECK(clReleaseMemObject(last_img_cl));
|
||||
CL_CHECK(clReleaseMemObject(v_cl));
|
||||
CL_CHECK(clReleaseMemObject(u_cl));
|
||||
CL_CHECK(clReleaseMemObject(y_cl));
|
||||
CL_CHECK(clReleaseCommandQueue(q));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
MonitoringModelFrame::MonitoringModelFrame(cl_device_id device_id, cl_context context) : ModelFrame(device_id, context) {
|
||||
input_frames = std::make_unique<uint8_t[]>(buf_size);
|
||||
//input_frame_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, buf_size, NULL, &err));
|
||||
|
||||
init_transform(device_id, context, MODEL_WIDTH, MODEL_HEIGHT);
|
||||
}
|
||||
uint8_t* MonitoringModelFrame::prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection, cl_mem* output) {
|
||||
run_transform(yuv_cl, MODEL_WIDTH, MODEL_HEIGHT, frame_width, frame_height, frame_stride, frame_uv_offset, projection);
|
||||
CL_CHECK(clEnqueueReadBuffer(q, y_cl, CL_TRUE, 0, MODEL_FRAME_SIZE * sizeof(uint8_t), input_frames.get(), 0, nullptr, nullptr));
|
||||
clFinish(q);
|
||||
//return &y_cl;
|
||||
return input_frames.get();
|
||||
}
|
||||
|
||||
MonitoringModelFrame::~MonitoringModelFrame() {
|
||||
deinit_transform();
|
||||
CL_CHECK(clReleaseCommandQueue(q));
|
||||
}
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
#include <cfloat>
|
||||
#include <cstdlib>
|
||||
#include <cassert>
|
||||
|
||||
#include <memory>
|
||||
|
||||
@@ -18,9 +19,56 @@
|
||||
|
||||
class ModelFrame {
|
||||
public:
|
||||
ModelFrame(cl_device_id device_id, cl_context context);
|
||||
~ModelFrame();
|
||||
uint8_t* prepare(cl_mem yuv_cl, int width, int height, int frame_stride, int frame_uv_offset, const mat3& transform, cl_mem *output);
|
||||
ModelFrame(cl_device_id device_id, cl_context context) {
|
||||
q = CL_CHECK_ERR(clCreateCommandQueue(context, device_id, 0, &err));
|
||||
}
|
||||
virtual ~ModelFrame() {}
|
||||
virtual uint8_t* prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection, cl_mem* output) { return NULL; }
|
||||
/*
|
||||
uint8_t* buffer_from_cl(cl_mem *in_frames, int buffer_size) {
|
||||
CL_CHECK(clEnqueueReadBuffer(q, *in_frames, CL_TRUE, 0, buffer_size, input_frames.get(), 0, nullptr, nullptr));
|
||||
clFinish(q);
|
||||
return &input_frames[0];
|
||||
}
|
||||
*/
|
||||
|
||||
int MODEL_WIDTH;
|
||||
int MODEL_HEIGHT;
|
||||
int MODEL_FRAME_SIZE;
|
||||
int buf_size;
|
||||
|
||||
protected:
|
||||
cl_mem y_cl, u_cl, v_cl;
|
||||
Transform transform;
|
||||
cl_command_queue q;
|
||||
std::unique_ptr<uint8_t[]> input_frames;
|
||||
|
||||
void init_transform(cl_device_id device_id, cl_context context, int model_width, int model_height) {
|
||||
y_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, model_width * model_height, NULL, &err));
|
||||
u_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, (model_width / 2) * (model_height / 2), NULL, &err));
|
||||
v_cl = CL_CHECK_ERR(clCreateBuffer(context, CL_MEM_READ_WRITE, (model_width / 2) * (model_height / 2), NULL, &err));
|
||||
transform_init(&transform, context, device_id);
|
||||
}
|
||||
|
||||
void deinit_transform() {
|
||||
transform_destroy(&transform);
|
||||
CL_CHECK(clReleaseMemObject(v_cl));
|
||||
CL_CHECK(clReleaseMemObject(u_cl));
|
||||
CL_CHECK(clReleaseMemObject(y_cl));
|
||||
}
|
||||
|
||||
void run_transform(cl_mem yuv_cl, int model_width, int model_height, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection) {
|
||||
transform_queue(&transform, q,
|
||||
yuv_cl, frame_width, frame_height, frame_stride, frame_uv_offset,
|
||||
y_cl, u_cl, v_cl, model_width, model_height, projection);
|
||||
}
|
||||
};
|
||||
|
||||
class DrivingModelFrame : public ModelFrame {
|
||||
public:
|
||||
DrivingModelFrame(cl_device_id device_id, cl_context context);
|
||||
~DrivingModelFrame();
|
||||
uint8_t* prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection, cl_mem* output);
|
||||
|
||||
const int MODEL_WIDTH = 512;
|
||||
const int MODEL_HEIGHT = 256;
|
||||
@@ -29,10 +77,22 @@ public:
|
||||
const size_t frame_size_bytes = MODEL_FRAME_SIZE * sizeof(uint8_t);
|
||||
|
||||
private:
|
||||
Transform transform;
|
||||
LoadYUVState loadyuv;
|
||||
cl_command_queue q;
|
||||
cl_mem y_cl, u_cl, v_cl, img_buffer_20hz_cl, last_img_cl;
|
||||
cl_mem img_buffer_20hz_cl, last_img_cl;//, input_frames_cl;
|
||||
cl_buffer_region region;
|
||||
std::unique_ptr<uint8_t[]> input_frames;
|
||||
};
|
||||
};
|
||||
|
||||
class MonitoringModelFrame : public ModelFrame {
|
||||
public:
|
||||
MonitoringModelFrame(cl_device_id device_id, cl_context context);
|
||||
~MonitoringModelFrame();
|
||||
uint8_t* prepare(cl_mem yuv_cl, int frame_width, int frame_height, int frame_stride, int frame_uv_offset, const mat3& projection, cl_mem* output);
|
||||
|
||||
const int MODEL_WIDTH = 1440;
|
||||
const int MODEL_HEIGHT = 960;
|
||||
const int MODEL_FRAME_SIZE = MODEL_WIDTH * MODEL_HEIGHT;
|
||||
const int buf_size = MODEL_FRAME_SIZE;
|
||||
|
||||
private:
|
||||
// cl_mem input_frame_cl;
|
||||
};
|
||||
|
||||
@@ -14,5 +14,13 @@ cdef extern from "common/clutil.h":
|
||||
cdef extern from "selfdrive/modeld/models/commonmodel.h":
|
||||
cppclass ModelFrame:
|
||||
int buf_size
|
||||
ModelFrame(cl_device_id, cl_context)
|
||||
# unsigned char * buffer_from_cl(cl_mem*, int);
|
||||
unsigned char * prepare(cl_mem, int, int, int, int, mat3, cl_mem*)
|
||||
|
||||
cppclass DrivingModelFrame:
|
||||
int buf_size
|
||||
DrivingModelFrame(cl_device_id, cl_context)
|
||||
|
||||
cppclass MonitoringModelFrame:
|
||||
int buf_size
|
||||
MonitoringModelFrame(cl_device_id, cl_context)
|
||||
|
||||
@@ -4,11 +4,12 @@
|
||||
import numpy as np
|
||||
cimport numpy as cnp
|
||||
from libc.string cimport memcpy
|
||||
from libc.stdint cimport uintptr_t
|
||||
|
||||
from msgq.visionipc.visionipc cimport cl_mem
|
||||
from msgq.visionipc.visionipc_pyx cimport VisionBuf, CLContext as BaseCLContext
|
||||
from .commonmodel cimport CL_DEVICE_TYPE_DEFAULT, cl_get_device_id, cl_create_context
|
||||
from .commonmodel cimport mat3, ModelFrame as cppModelFrame
|
||||
from .commonmodel cimport mat3, ModelFrame as cppModelFrame, DrivingModelFrame as cppDrivingModelFrame, MonitoringModelFrame as cppMonitoringModelFrame
|
||||
|
||||
|
||||
cdef class CLContext(BaseCLContext):
|
||||
@@ -23,11 +24,17 @@ cdef class CLMem:
|
||||
mem.mem = <cl_mem*> cmem
|
||||
return mem
|
||||
|
||||
@property
|
||||
def mem_address(self):
|
||||
return <uintptr_t>(self.mem)
|
||||
|
||||
def cl_from_visionbuf(VisionBuf buf):
|
||||
return CLMem.create(<void*>&buf.buf.buf_cl)
|
||||
|
||||
|
||||
cdef class ModelFrame:
|
||||
cdef cppModelFrame * frame
|
||||
|
||||
def __cinit__(self, CLContext context):
|
||||
self.frame = new cppModelFrame(context.device_id, context.context)
|
||||
cdef int buf_size
|
||||
|
||||
def __dealloc__(self):
|
||||
del self.frame
|
||||
@@ -42,4 +49,28 @@ cdef class ModelFrame:
|
||||
data = self.frame.prepare(buf.buf.buf_cl, buf.width, buf.height, buf.stride, buf.uv_offset, cprojection, output.mem)
|
||||
if not data:
|
||||
return None
|
||||
return np.asarray(<cnp.uint8_t[:self.frame.buf_size]> data)
|
||||
|
||||
return np.asarray(<cnp.uint8_t[:self.buf_size]> data)
|
||||
# return CLMem.create(data)
|
||||
|
||||
# def buffer_from_cl(self, CLMem in_frames):
|
||||
# cdef unsigned char * data2
|
||||
# data2 = self.frame.buffer_from_cl(in_frames.mem, self.buf_size)
|
||||
# return np.asarray(<cnp.uint8_t[:self.buf_size]> data2)
|
||||
|
||||
|
||||
cdef class DrivingModelFrame(ModelFrame):
|
||||
cdef cppDrivingModelFrame * _frame
|
||||
|
||||
def __cinit__(self, CLContext context):
|
||||
self._frame = new cppDrivingModelFrame(context.device_id, context.context)
|
||||
self.frame = <cppModelFrame*>(self._frame)
|
||||
self.buf_size = self._frame.buf_size
|
||||
|
||||
cdef class MonitoringModelFrame(ModelFrame):
|
||||
cdef cppMonitoringModelFrame * _frame
|
||||
|
||||
def __cinit__(self, CLContext context):
|
||||
self._frame = new cppMonitoringModelFrame(context.device_id, context.context)
|
||||
self.frame = <cppModelFrame*>(self._frame)
|
||||
self.buf_size = self._frame.buf_size
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:663f58026cdf0b5c8e079a8a1591c8e2b5fa7e5c0f29a882011a17c405af10f4
|
||||
size 50320584
|
||||
oid sha256:0c896681fd6851de3968433e12f37834429eba265e938cf383200be3e5835cec
|
||||
size 49096168
|
||||
|
||||
@@ -96,8 +96,6 @@ class Parser:
|
||||
out_shape=(ModelConstants.LEAD_TRAJ_LEN,ModelConstants.LEAD_WIDTH))
|
||||
if 'lat_planner_solution' in outs:
|
||||
self.parse_mdn('lat_planner_solution', outs, in_N=0, out_N=0, out_shape=(ModelConstants.IDX_N,ModelConstants.LAT_PLANNER_SOLUTION_WIDTH))
|
||||
if 'desired_curvature' in outs:
|
||||
self.parse_mdn('desired_curvature', outs, in_N=0, out_N=0, out_shape=(ModelConstants.DESIRED_CURV_WIDTH,))
|
||||
for k in ['lead_prob', 'lane_lines_prob', 'meta']:
|
||||
self.parse_binary_crossentropy(k, outs)
|
||||
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
|
||||
|
||||
@@ -1,39 +1,12 @@
|
||||
import onnx
|
||||
import itertools
|
||||
import os
|
||||
import onnx
|
||||
import sys
|
||||
import numpy as np
|
||||
from typing import Any
|
||||
|
||||
from openpilot.selfdrive.modeld.runners.runmodel_pyx import RunModel
|
||||
from openpilot.selfdrive.modeld.runners.ort_helpers import convert_fp16_to_fp32, ORT_TYPES_TO_NP_TYPES
|
||||
|
||||
ORT_TYPES_TO_NP_TYPES = {'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(uint8)': np.uint8}
|
||||
|
||||
def attributeproto_fp16_to_fp32(attr):
|
||||
float32_list = np.frombuffer(attr.raw_data, dtype=np.float16)
|
||||
attr.data_type = 1
|
||||
attr.raw_data = float32_list.astype(np.float32).tobytes()
|
||||
|
||||
def convert_fp16_to_fp32(onnx_path_or_bytes):
|
||||
if isinstance(onnx_path_or_bytes, bytes):
|
||||
model = onnx.load_from_string(onnx_path_or_bytes)
|
||||
elif isinstance(onnx_path_or_bytes, str):
|
||||
model = onnx.load(onnx_path_or_bytes)
|
||||
|
||||
for i in model.graph.initializer:
|
||||
if i.data_type == 10:
|
||||
attributeproto_fp16_to_fp32(i)
|
||||
for i in itertools.chain(model.graph.input, model.graph.output):
|
||||
if i.type.tensor_type.elem_type == 10:
|
||||
i.type.tensor_type.elem_type = 1
|
||||
for i in model.graph.node:
|
||||
if i.op_type == 'Cast' and i.attribute[0].i == 10:
|
||||
i.attribute[0].i = 1
|
||||
for a in i.attribute:
|
||||
if hasattr(a, 't'):
|
||||
if a.t.data_type == 10:
|
||||
attributeproto_fp16_to_fp32(a.t)
|
||||
return model.SerializeToString()
|
||||
|
||||
def create_ort_session(path, fp16_to_fp32):
|
||||
os.environ["OMP_NUM_THREADS"] = "4"
|
||||
@@ -49,14 +22,14 @@ def create_ort_session(path, fp16_to_fp32):
|
||||
provider = 'OpenVINOExecutionProvider'
|
||||
elif 'CUDAExecutionProvider' in ort.get_available_providers() and 'ONNXCPU' not in os.environ:
|
||||
options.intra_op_num_threads = 2
|
||||
provider = ('CUDAExecutionProvider', {'cudnn_conv_algo_search': 'DEFAULT'})
|
||||
provider = ('CUDAExecutionProvider', {'cudnn_conv_algo_search': 'EXHAUSTIVE'})
|
||||
else:
|
||||
options.intra_op_num_threads = 2
|
||||
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
||||
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
provider = 'CPUExecutionProvider'
|
||||
|
||||
model_data = convert_fp16_to_fp32(path) if fp16_to_fp32 else path
|
||||
model_data = convert_fp16_to_fp32(onnx.load(path)) if fp16_to_fp32 else path
|
||||
print("Onnx selected provider: ", [provider], file=sys.stderr)
|
||||
ort_session = ort.InferenceSession(model_data, options, providers=[provider])
|
||||
print("Onnx using ", ort_session.get_providers(), file=sys.stderr)
|
||||
|
||||
36
selfdrive/modeld/runners/ort_helpers.py
Normal file
36
selfdrive/modeld/runners/ort_helpers.py
Normal file
@@ -0,0 +1,36 @@
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
import numpy as np
|
||||
import itertools
|
||||
|
||||
ORT_TYPES_TO_NP_TYPES = {'tensor(float16)': np.float16, 'tensor(float)': np.float32, 'tensor(uint8)': np.uint8}
|
||||
|
||||
def attributeproto_fp16_to_fp32(attr):
|
||||
float32_list = np.frombuffer(attr.raw_data, dtype=np.float16)
|
||||
attr.data_type = 1
|
||||
attr.raw_data = float32_list.astype(np.float32).tobytes()
|
||||
|
||||
def convert_fp16_to_fp32(model):
|
||||
for i in model.graph.initializer:
|
||||
if i.data_type == 10:
|
||||
attributeproto_fp16_to_fp32(i)
|
||||
for i in itertools.chain(model.graph.input, model.graph.output):
|
||||
if i.type.tensor_type.elem_type == 10:
|
||||
i.type.tensor_type.elem_type = 1
|
||||
for i in model.graph.node:
|
||||
if i.op_type == 'Cast' and i.attribute[0].i == 10:
|
||||
i.attribute[0].i = 1
|
||||
for a in i.attribute:
|
||||
if hasattr(a, 't'):
|
||||
if a.t.data_type == 10:
|
||||
attributeproto_fp16_to_fp32(a.t)
|
||||
return model.SerializeToString()
|
||||
|
||||
|
||||
def make_onnx_cpu_runner(model_path):
|
||||
options = ort.SessionOptions()
|
||||
options.intra_op_num_threads = 4
|
||||
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
||||
options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
model_data = convert_fp16_to_fp32(onnx.load(model_path))
|
||||
return ort.InferenceSession(model_data, options, providers=['CPUExecutionProvider'])
|
||||
@@ -432,6 +432,7 @@ void process_peripheral_state(Panda *panda, PubMaster *pm, bool no_fan_control)
|
||||
|
||||
if (ir_pwr != prev_ir_pwr || sm.frame % 100 == 0 || ir_pwr >= 50.0) {
|
||||
panda->set_ir_pwr(ir_pwr);
|
||||
Hardware::set_ir_power(ir_pwr);
|
||||
prev_ir_pwr = ir_pwr;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:6267aadf44c81fb003130aff6f8902014a1add7f18c5c563239943ab015974c9
|
||||
size 356177
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:433633d2042cfe1191e5b71ec4b34edca21877377f2ace8aaf6ae43f7b805171
|
||||
size 256336
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:64aa7c86bf420adfcf78888bfce7233d68ec30ed77f3f9d3f923f26c59f85c74
|
||||
size 332371
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:aa2451a6697da9fb1cf305081337782eb944a623b7662fd0a58ebbed5d0395e7
|
||||
size 268892
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:75766b120bc372bad7b2a80be2c195de9b85cf11142f2a9da348637f15e245db
|
||||
size 437801
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:c692e18506a36eeed22d23d1739af8f26fb3f39f34584fdbcb1ebf3bc6430957
|
||||
size 308611
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:8d62d5774bb4be70ef337179c4bab2347f153fc959155bef917527cc6868bcd3
|
||||
size 393161
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:d57c998320672e771712bd0b3f35c07bd159dff472368b1bf1abc9b6a3541dad
|
||||
size 334258
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:fe9370fb0f7cad039d12ddc2f23dd4ee1c94d5d75faf9b6143ec390c06b28c9d
|
||||
size 470471
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:917142016b6ed8c800a2c00aecbfdba7eecda3b1a3fcb15a968fa726b5b9241c
|
||||
size 260324
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:d4b0e05a8a1b21e008ed5c1a41f267d596cc35a6d49ec8eff496856b34866360
|
||||
size 217481
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:4d8e2889e70c310a84eff142ee481cfc92888bbe257809be3694032c67277675
|
||||
size 293076
|
||||
@@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:83241bc1d9704dcc916e1ef2f48e0851d09cdf8134fb317b06cbda496cbe9808
|
||||
size 164545
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:a4ddb9bfa5f1d835cbf42e2d1a066eca81e29c801046e0ce5ac2f5a3803bfbd1
|
||||
size 163958
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:d60f784a226d144e1ac2c9ceec53b30509cbcceffb5e28f9c1b3a88163958352
|
||||
size 260706
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:dc8216930cf4b36dd080f32b6f52172e08c2c4fe946450162950e799345d1829
|
||||
size 100106
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:cb0195a176d9a917ef87698ef6487547ef19f35e86b4ba12bbecc7b5e6a26295
|
||||
size 262860
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:3ddaa636dc318b33e356787852aad7559c656ce55469c49b7b97fae093dc7889
|
||||
size 259081
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:f282a05c43be27ca4b4d522e5dcdddf8597ae92418328e951f7fef74a5a82cbc
|
||||
size 268145
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:7ef1a55cad5cede01685360813781d30ee576a9f3d201f5caf1144327688fc0b
|
||||
size 305127
|
||||
@@ -1,3 +0,0 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:606cf3036fbcce5be1140953aac7a388a303e6b901b9fe166bc8d5020af76e3f
|
||||
size 281374
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:ec49b06b23bcd461cdcfbc4c94157c775d2dd91633e8f6648e4ce50732224335
|
||||
size 280914
|
||||
@@ -0,0 +1,3 @@
|
||||
version https://git-lfs.github.com/spec/v1
|
||||
oid sha256:055486d036c48811a0e0c4e461a7a1bdf66e3bef2fb6afdaf88aefb7b63a4f21
|
||||
size 255708
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user