Files
sunnypilot/common/transformations/transformations.py

343 lines
9.4 KiB
Python
Raw Normal View History

import numpy as np
# Constants
a = 6378137.0
b = 6356752.3142
esq = 6.69437999014e-3
e1sq = 6.73949674228e-3
def geodetic2ecef_single(g):
"""
Convert geodetic coordinates (latitude, longitude, altitude) to ECEF.
"""
try:
if len(g) != 3:
raise ValueError("Geodetic must be size 3")
except TypeError:
raise ValueError("Geodetic must be a sequence of length 3") from None
lat, lon, alt = g
lat = np.radians(lat)
lon = np.radians(lon)
xi = np.sqrt(1.0 - esq * np.sin(lat)**2)
x = (a / xi + alt) * np.cos(lat) * np.cos(lon)
y = (a / xi + alt) * np.cos(lat) * np.sin(lon)
z = (a / xi * (1.0 - esq) + alt) * np.sin(lat)
return np.array([x, y, z])
def ecef2geodetic_single(e):
"""
Convert ECEF to geodetic coordinates using Ferrari's solution.
"""
x, y, z = e
r = np.sqrt(x**2 + y**2)
Esq = a**2 - b**2
F = 54 * b**2 * z**2
G = r**2 + (1 - esq) * z**2 - esq * Esq
C = (esq**2 * F * r**2) / (G**3)
S = np.cbrt(1 + C + np.sqrt(C**2 + 2 * C))
P = F / (3 * (S + 1 / S + 1)**2 * G**2)
Q = np.sqrt(1 + 2 * esq**2 * P)
r_0 = -(P * esq * r) / (1 + Q) + np.sqrt(0.5 * a**2 * (1 + 1.0 / Q) - P * (1 - esq) * z**2 / (Q * (1 + Q)) - 0.5 * P * r**2)
U = np.sqrt((r - esq * r_0)**2 + z**2)
V = np.sqrt((r - esq * r_0)**2 + (1 - esq) * z**2)
Z_0 = b**2 * z / (a * V)
h = U * (1 - b**2 / (a * V))
lat = np.arctan((z + e1sq * Z_0) / r)
lon = np.arctan2(y, x)
return np.array([np.degrees(lat), np.degrees(lon), h])
def euler2quat_single(euler):
"""
Convert Euler angles (roll, pitch, yaw) to a quaternion.
Rotation order: Z-Y-X (yaw, pitch, roll).
"""
phi, theta, psi = euler
c_phi, s_phi = np.cos(phi / 2), np.sin(phi / 2)
c_theta, s_theta = np.cos(theta / 2), np.sin(theta / 2)
c_psi, s_psi = np.cos(psi / 2), np.sin(psi / 2)
w = c_phi * c_theta * c_psi + s_phi * s_theta * s_psi
x = s_phi * c_theta * c_psi - c_phi * s_theta * s_psi
y = c_phi * s_theta * c_psi + s_phi * c_theta * s_psi
z = c_phi * c_theta * s_psi - s_phi * s_theta * c_psi
if w < 0:
return np.array([-w, -x, -y, -z])
return np.array([w, x, y, z])
def quat2euler_single(q):
"""
Convert a quaternion to Euler angles (roll, pitch, yaw).
"""
w, x, y, z = q
gamma = np.arctan2(2 * (w * x + y * z), 1 - 2 * (x**2 + y**2))
sin_arg = 2 * (w * y - z * x)
sin_arg = np.clip(sin_arg, -1.0, 1.0)
theta = np.arcsin(sin_arg)
psi = np.arctan2(2 * (w * z + x * y), 1 - 2 * (y**2 + z**2))
return np.array([gamma, theta, psi])
def quat2rot_single(q):
"""
Convert a quaternion to a 3x3 rotation matrix.
"""
w, x, y, z = q
xx, yy, zz = x * x, y * y, z * z
xy, xz, yz = x * y, x * z, y * z
wx, wy, wz = w * x, w * y, w * z
mat = np.array([
[1 - 2 * (yy + zz), 2 * (xy - wz), 2 * (xz + wy)],
[2 * (xy + wz), 1 - 2 * (xx + zz), 2 * (yz - wx)],
[2 * (xz - wy), 2 * (yz + wx), 1 - 2 * (xx + yy)]
])
return mat
def rot2quat_single(rot):
"""
Convert a 3x3 rotation matrix to a quaternion.
"""
trace = np.trace(rot)
if trace > 0:
s = 0.5 / np.sqrt(trace + 1.0)
w = 0.25 / s
x = (rot[2, 1] - rot[1, 2]) * s
y = (rot[0, 2] - rot[2, 0]) * s
z = (rot[1, 0] - rot[0, 1]) * s
else:
if rot[0, 0] > rot[1, 1] and rot[0, 0] > rot[2, 2]:
s = 2.0 * np.sqrt(1.0 + rot[0, 0] - rot[1, 1] - rot[2, 2])
w = (rot[2, 1] - rot[1, 2]) / s
x = 0.25 * s
y = (rot[0, 1] + rot[1, 0]) / s
z = (rot[0, 2] + rot[2, 0]) / s
elif rot[1, 1] > rot[2, 2]:
s = 2.0 * np.sqrt(1.0 + rot[1, 1] - rot[0, 0] - rot[2, 2])
w = (rot[0, 2] - rot[2, 0]) / s
x = (rot[0, 1] + rot[1, 0]) / s
y = 0.25 * s
z = (rot[1, 2] + rot[2, 1]) / s
else:
s = 2.0 * np.sqrt(1.0 + rot[2, 2] - rot[0, 0] - rot[1, 1])
w = (rot[1, 0] - rot[0, 1]) / s
x = (rot[0, 2] + rot[2, 0]) / s
y = (rot[1, 2] + rot[2, 1]) / s
z = 0.25 * s
if w < 0:
return np.array([-w, -x, -y, -z])
return np.array([w, x, y, z])
def euler2rot_single(euler):
"""
Convert Euler angles (roll, pitch, yaw) to a 3x3 rotation matrix.
Rotation order: Z-Y-X (yaw, pitch, roll).
"""
phi, theta, psi = euler
cx, sx = np.cos(phi), np.sin(phi)
cy, sy = np.cos(theta), np.sin(theta)
cz, sz = np.cos(psi), np.sin(psi)
Rx = np.array([[1, 0, 0], [0, cx, -sx], [0, sx, cx]])
Ry = np.array([[cy, 0, sy], [0, 1, 0], [-sy, 0, cy]])
Rz = np.array([[cz, -sz, 0], [sz, cz, 0], [0, 0, 1]])
return Rz @ Ry @ Rx
def rot2euler_single(rot):
"""
Convert a 3x3 rotation matrix to Euler angles (roll, pitch, yaw).
"""
return quat2euler_single(rot2quat_single(rot))
def rot_matrix(roll, pitch, yaw):
"""
Create a 3x3 rotation matrix from roll, pitch, and yaw angles.
"""
return euler2rot_single([roll, pitch, yaw])
def axis_angle_to_rot(axis, angle):
"""
Convert an axis-angle representation to a 3x3 rotation matrix.
"""
c = np.cos(angle / 2)
s = np.sin(angle / 2)
q = np.array([c, s*axis[0], s*axis[1], s*axis[2]])
return quat2rot_single(q)
class LocalCoord:
"""
A class to handle conversions between ECEF and local NED coordinates.
"""
def __init__(self, geodetic=None, ecef=None):
"""
Initialize LocalCoord with either geodetic or ECEF coordinates.
"""
if geodetic is not None:
self.init_ecef = geodetic2ecef_single(geodetic)
lat, lon, _ = geodetic
elif ecef is not None:
self.init_ecef = np.array(ecef)
lat, lon, _ = ecef2geodetic_single(ecef)
else:
raise ValueError("Must provide geodetic or ecef")
lat = np.radians(lat)
lon = np.radians(lon)
self.ned2ecef_matrix = np.array([
[-np.sin(lat) * np.cos(lon), -np.sin(lon), -np.cos(lat) * np.cos(lon)],
[-np.sin(lat) * np.sin(lon), np.cos(lon), -np.cos(lat) * np.sin(lon)],
[np.cos(lat), 0, -np.sin(lat)]
])
self.ecef2ned_matrix = self.ned2ecef_matrix.T
@classmethod
def from_geodetic(cls, geodetic):
"""
Create a LocalCoord instance from geodetic coordinates.
"""
return cls(geodetic=geodetic)
@classmethod
def from_ecef(cls, ecef):
"""
Create a LocalCoord instance from ECEF coordinates.
"""
return cls(ecef=ecef)
def ecef2ned_single(self, ecef):
"""
Convert a single ECEF point to NED coordinates relative to the origin.
"""
return self.ecef2ned_matrix @ (ecef - self.init_ecef)
def ned2ecef_single(self, ned):
"""
Convert a single NED point to ECEF coordinates.
"""
return self.ned2ecef_matrix @ ned + self.init_ecef
def geodetic2ned_single(self, geodetic):
"""
Convert a single geodetic point to NED coordinates.
"""
ecef = geodetic2ecef_single(geodetic)
return self.ecef2ned_single(ecef)
def ned2geodetic_single(self, ned):
"""
Convert a single NED point to geodetic coordinates.
"""
ecef = self.ned2ecef_single(ned)
return ecef2geodetic_single(ecef)
@property
def ned_from_ecef_matrix(self):
"""
Returns the rotation matrix from ECEF to NED coordinates.
"""
return self.ecef2ned_matrix
@property
def ecef_from_ned_matrix(self):
"""
Returns the rotation matrix from NED to ECEF coordinates.
"""
return self.ned2ecef_matrix
def ecef_euler_from_ned_single(ecef_init, ned_pose):
"""
Convert NED Euler angles (roll, pitch, yaw) at a given ECEF origin
to equivalent ECEF Euler angles.
"""
converter = LocalCoord(ecef=ecef_init)
zero = np.array(ecef_init)
x0 = converter.ned2ecef_single([1, 0, 0]) - zero
y0 = converter.ned2ecef_single([0, 1, 0]) - zero
z0 = converter.ned2ecef_single([0, 0, 1]) - zero
phi, theta, psi = ned_pose
x1 = axis_angle_to_rot(z0, psi) @ x0
y1 = axis_angle_to_rot(z0, psi) @ y0
z1 = axis_angle_to_rot(z0, psi) @ z0
x2 = axis_angle_to_rot(y1, theta) @ x1
y2 = axis_angle_to_rot(y1, theta) @ y1
z2 = axis_angle_to_rot(y1, theta) @ z1
x3 = axis_angle_to_rot(x2, phi) @ x2
y3 = axis_angle_to_rot(x2, phi) @ y2
x0 = np.array([1.0, 0, 0])
y0 = np.array([0, 1.0, 0])
z0 = np.array([0, 0, 1.0])
psi_out = np.arctan2(np.dot(x3, y0), np.dot(x3, x0))
theta_out = np.arctan2(-np.dot(x3, z0), np.sqrt(np.dot(x3, x0)**2 + np.dot(x3, y0)**2))
y2 = axis_angle_to_rot(z0, psi_out) @ y0
z2 = axis_angle_to_rot(y2, theta_out) @ z0
phi_out = np.arctan2(np.dot(y3, z2), np.dot(y3, y2))
return np.array([phi_out, theta_out, psi_out])
def ned_euler_from_ecef_single(ecef_init, ecef_pose):
"""
Convert ECEF Euler angles (roll, pitch, yaw) at a given ECEF origin
to equivalent NED Euler angles.
"""
converter = LocalCoord(ecef=ecef_init)
x0 = np.array([1.0, 0, 0])
y0 = np.array([0, 1.0, 0])
z0 = np.array([0, 0, 1.0])
phi, theta, psi = ecef_pose
x1 = axis_angle_to_rot(z0, psi) @ x0
y1 = axis_angle_to_rot(z0, psi) @ y0
z1 = axis_angle_to_rot(z0, psi) @ z0
x2 = axis_angle_to_rot(y1, theta) @ x1
y2 = axis_angle_to_rot(y1, theta) @ y1
z2 = axis_angle_to_rot(y1, theta) @ z1
x3 = axis_angle_to_rot(x2, phi) @ x2
y3 = axis_angle_to_rot(x2, phi) @ y2
zero = np.array(ecef_init)
x0 = converter.ned2ecef_single([1, 0, 0]) - zero
y0 = converter.ned2ecef_single([0, 1, 0]) - zero
z0 = converter.ned2ecef_single([0, 0, 1]) - zero
psi_out = np.arctan2(np.dot(x3, y0), np.dot(x3, x0))
theta_out = np.arctan2(-np.dot(x3, z0), np.sqrt(np.dot(x3, x0)**2 + np.dot(x3, y0)**2))
y2 = axis_angle_to_rot(z0, psi_out) @ y0
z2 = axis_angle_to_rot(y2, theta_out) @ z0
phi_out = np.arctan2(np.dot(y3, z2), np.dot(y3, y2))
return np.array([phi_out, theta_out, psi_out])