2020-01-17 12:48:30 -08:00
|
|
|
import numpy as np
|
2021-08-31 21:29:53 +02:00
|
|
|
from numbers import Number
|
|
|
|
|
|
2024-05-20 17:43:54 -07:00
|
|
|
class PIDController:
|
2025-10-18 11:12:47 -07:00
|
|
|
def __init__(self, k_p, k_i, k_d=0., pos_limit=1e308, neg_limit=-1e308, rate=100):
|
2026-01-19 11:39:21 -08:00
|
|
|
self._k_p: list[list[float]] = [[0], [k_p]] if isinstance(k_p, Number) else k_p
|
|
|
|
|
self._k_i: list[list[float]] = [[0], [k_i]] if isinstance(k_i, Number) else k_i
|
|
|
|
|
self._k_d: list[list[float]] = [[0], [k_d]] if isinstance(k_d, Number) else k_d
|
2020-01-17 12:48:30 -08:00
|
|
|
|
2025-08-15 11:39:56 -07:00
|
|
|
self.set_limits(pos_limit, neg_limit)
|
2020-01-17 12:48:30 -08:00
|
|
|
|
2025-10-09 11:10:44 -07:00
|
|
|
self.i_dt = 1.0 / rate
|
2022-04-09 15:22:29 -07:00
|
|
|
self.speed = 0.0
|
2020-01-17 12:48:30 -08:00
|
|
|
|
|
|
|
|
self.reset()
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def k_p(self):
|
2025-01-15 04:22:56 +05:30
|
|
|
return np.interp(self.speed, self._k_p[0], self._k_p[1])
|
2020-01-17 12:48:30 -08:00
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def k_i(self):
|
2025-01-15 04:22:56 +05:30
|
|
|
return np.interp(self.speed, self._k_i[0], self._k_i[1])
|
2020-01-17 12:48:30 -08:00
|
|
|
|
2022-04-07 11:34:45 -07:00
|
|
|
@property
|
|
|
|
|
def k_d(self):
|
2025-01-15 04:22:56 +05:30
|
|
|
return np.interp(self.speed, self._k_d[0], self._k_d[1])
|
2022-04-07 11:34:45 -07:00
|
|
|
|
2020-01-17 12:48:30 -08:00
|
|
|
def reset(self):
|
|
|
|
|
self.p = 0.0
|
|
|
|
|
self.i = 0.0
|
2022-04-07 11:34:45 -07:00
|
|
|
self.d = 0.0
|
2020-01-17 12:48:30 -08:00
|
|
|
self.f = 0.0
|
|
|
|
|
self.control = 0
|
|
|
|
|
|
2025-08-15 11:39:56 -07:00
|
|
|
def set_limits(self, pos_limit, neg_limit):
|
|
|
|
|
self.pos_limit = pos_limit
|
|
|
|
|
self.neg_limit = neg_limit
|
|
|
|
|
|
2025-08-11 14:25:29 -07:00
|
|
|
def update(self, error, error_rate=0.0, speed=0.0, feedforward=0., freeze_integrator=False):
|
2020-01-17 12:48:30 -08:00
|
|
|
self.speed = speed
|
2025-10-09 11:10:44 -07:00
|
|
|
self.p = self.k_p * float(error)
|
|
|
|
|
self.d = self.k_d * error_rate
|
2025-10-18 11:12:47 -07:00
|
|
|
self.f = feedforward
|
2020-01-17 12:48:30 -08:00
|
|
|
|
2025-08-11 14:25:29 -07:00
|
|
|
if not freeze_integrator:
|
2025-10-09 11:10:44 -07:00
|
|
|
i = self.i + self.k_i * self.i_dt * error
|
2024-11-08 20:15:36 -06:00
|
|
|
|
2025-08-11 14:25:29 -07:00
|
|
|
# Don't allow windup if already clipping
|
|
|
|
|
test_control = self.p + i + self.d + self.f
|
|
|
|
|
i_upperbound = self.i if test_control > self.pos_limit else self.pos_limit
|
|
|
|
|
i_lowerbound = self.i if test_control < self.neg_limit else self.neg_limit
|
|
|
|
|
self.i = np.clip(i, i_lowerbound, i_upperbound)
|
2020-01-17 12:48:30 -08:00
|
|
|
|
2022-04-07 11:34:45 -07:00
|
|
|
control = self.p + self.i + self.d + self.f
|
2025-01-15 04:22:56 +05:30
|
|
|
self.control = np.clip(control, self.neg_limit, self.pos_limit)
|
2020-01-17 12:48:30 -08:00
|
|
|
return self.control
|