Files
panda-meb/python/__init__.py
DevTekVE 4c2ccd7fe5 Modular Assistive Driving System (MADS) (#40)
* alternative experience

* safety init

* fix

* more update

* not really

* misra

* Add Custom MIT License (#38)

* brake check was not handled

* revert

* alt -> lkas

* explicit checks

* support toyota and ford

* rename

* hyundai can-fd support

* only allow lkas if enabled

* hyundai: main button handling

* revert

* hyundai: main button heartbeat

* add logging for controls allowed lateral

* fix panda safety

* ford btn

* toyota btn

* fca btn

* honda btn

* mads safety tests

* more tests

* safety misra

* safety mutation

* misra

* mutation experiment

* fix

* ford test main button

* ford test lkas button

* more ford test

* hyundai lkas and main

* more ford

* hyundai canfd

* rename

* rename

* cleaner

* more fixes

* more hyundai tests

* no longer needed

* thanks for tests!

* more tests for lat

* more explicit

* make sure to reset

* try this out

* probably needed

* move

* misra

* not needed

* move to safety_mads

* not really needed

* remove

* MADS: Refactor MADS safety with improved state management (pull request #46)

Refactor MADS safety with improved state management

This commit introduces a major refactoring of the MADS safety module, improving state management and control flow. Key changes include:

Core Changes:
- Introduced a MADSState struct to centralize state management
- Removed global state variables in favor of structured state
- Implemented button transition handling with explicit state tracking (PRESSED/RELEASED/NO_CHANGE)
- Added state flags for button availability detection
- Simplified lateral control permission logic

Button Handling:
- Separated main button and LKAS button state tracking
- Added independent engagement states for each button
- Improved button press detection across multiple platforms
- Added support for main and LKAS buttons on Hyundai platforms
- Modified ACC main state handling

Testing:
- Added comprehensive test coverage for MADS state transitions
- Added new MADS-specific test base class for consistent testing across platforms
- Added mutation testing for state management
- Extended timeout for mutation tests from 5 to 8 minutes
- Added extensive button press validation tests
- Enhanced debugging output in replay drive tests

The refactored code provides a more organized implementation of MADS safety features while maintaining compatibility with existing safety checks.

* adding note

* adding ford (WIP)

* adding honda (WIP)

* adding toyota (WIP)

* adding chrysler (WIP)

* Standardize Button State Handling Across Platforms

Refactor button state handling by replacing integer constants with an enumerated `ButtonState` type and updating logic to improve readability and maintainability. This change affects button press detection in Ford, Honda, Hyundai, and Toyota safety modules and aligns them with a unified MADS button state approach. Enums provide a clearer understanding of button states and transitions, facilitating easier maintenance and future enhancements.

* Disable LKAS button press logic in Honda and Toyota safety.

The code for processing LKAS button presses has been commented out in both Honda and Toyota safety implementations. This change aims to investigate or temporarily halt the button press effects without removing the logic altogether. It will be important to test for any impacts this may have on vehicle control functionality.

* Remove commented out code in toyota_rx_hook function

This commit cleans up the toyota_rx_hook function by removing unnecessary commented-out code that checks for LKAS button presses on bus 2. This helps improve code readability and maintainability without altering the existing functionality.

* GM, mazda, nissan, subaru (global & preglobal)

* Honda LKAS

* Revert "Remove commented out code in toyota_rx_hook function"

This reverts commit d6b012c01a08118d91fad56c9f6ac2f92b671968.

* Toyota, Subaru Global LKAS

* nissan fix

* gm fix

* use speed msg to force rx

* im bored

* misra

* subaru/toyota/honda

* nope

* attempt

* go through all buttons

* try nissan

* more nissan

* nissan tests passed!

* subaru lkas test (not sure why it's not passing 2 and 3 values)

* Improved code organization in safety_subaru.h and test_subaru.py

This commit includes a minor restructuring in safety_subaru.h and test_subaru.py for better readability and flow. The condition check in safety_subaru.h for lkas_hud now has explicit parentheses. With regard to test_subaru.py, an unnecessary import was removed, and the sequence of steps in the test was reordered - now enabling mads and cleaning up mads_states happens before each subtest.

* Refactor tests to use _speed_msg instead of _user_brake_msg.

Updated the MADS safety tests to utilize the _speed_msg(0) function call in place of _user_brake_msg(False).

* Reworking the tests a little for clarity

* disabling lkas again on toyota temporarily

* fix mads condition to engage

* hyundai and honda good with new tests

* Redoing more tests

* update for safety tick ensuring mads control is exited while lagging

* Updating tests for toyota

* cleaning up tests on hkg

* commenting out temp_debug for future use

* revert

* constants

* cleanup

* format!

* match yota

* Apply suggestions from code review

* force

* explicit checks

* revert

---------

Co-authored-by: Jason Wen <haibin.wen3@gmail.com>
2024-12-05 19:39:36 -05:00

959 lines
30 KiB
Python

# python library to interface with panda
import os
import sys
import time
import usb1
import struct
import hashlib
import binascii
from functools import wraps, partial
from itertools import accumulate
from .base import BaseHandle
from .constants import FW_PATH, McuType
from .dfu import PandaDFU
from .isotp import isotp_send, isotp_recv
from .spi import PandaSpiHandle, PandaSpiException, PandaProtocolMismatch
from .usb import PandaUsbHandle
from .utils import logger
__version__ = '0.0.10'
CANPACKET_HEAD_SIZE = 0x6
DLC_TO_LEN = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64]
LEN_TO_DLC = {length: dlc for (dlc, length) in enumerate(DLC_TO_LEN)}
PANDA_BUS_CNT = 3
def calculate_checksum(data):
res = 0
for b in data:
res ^= b
return res
def pack_can_buffer(arr, fd=False):
snds = [b'']
for address, dat, bus in arr:
assert len(dat) in LEN_TO_DLC
#logger.debug(" W 0x%x: 0x%s", address, dat.hex())
extended = 1 if address >= 0x800 else 0
data_len_code = LEN_TO_DLC[len(dat)]
header = bytearray(CANPACKET_HEAD_SIZE)
word_4b = address << 3 | extended << 2
header[0] = (data_len_code << 4) | (bus << 1) | int(fd)
header[1] = word_4b & 0xFF
header[2] = (word_4b >> 8) & 0xFF
header[3] = (word_4b >> 16) & 0xFF
header[4] = (word_4b >> 24) & 0xFF
header[5] = calculate_checksum(header[:5] + dat)
snds[-1] += header + dat
if len(snds[-1]) > 256: # Limit chunks to 256 bytes
snds.append(b'')
return snds
def unpack_can_buffer(dat):
ret = []
while len(dat) >= CANPACKET_HEAD_SIZE:
data_len = DLC_TO_LEN[(dat[0]>>4)]
header = dat[:CANPACKET_HEAD_SIZE]
bus = (header[0] >> 1) & 0x7
address = (header[4] << 24 | header[3] << 16 | header[2] << 8 | header[1]) >> 3
if (header[1] >> 1) & 0x1:
# returned
bus += 128
if header[1] & 0x1:
# rejected
bus += 192
# we need more from the next transfer
if data_len > len(dat) - CANPACKET_HEAD_SIZE:
break
assert calculate_checksum(dat[:(CANPACKET_HEAD_SIZE+data_len)]) == 0, "CAN packet checksum incorrect"
data = dat[CANPACKET_HEAD_SIZE:(CANPACKET_HEAD_SIZE+data_len)]
dat = dat[(CANPACKET_HEAD_SIZE+data_len):]
ret.append((address, data, bus))
return (ret, dat)
def ensure_version(desc, lib_field, panda_field, fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
lib_version = getattr(self, lib_field)
panda_version = getattr(self, panda_field)
if lib_version != panda_version:
raise RuntimeError(f"{desc} packet version mismatch: panda's firmware v{panda_version}, library v{lib_version}. Reflash panda.")
return fn(self, *args, **kwargs)
return wrapper
ensure_can_packet_version = partial(ensure_version, "CAN", "CAN_PACKET_VERSION", "can_version")
ensure_can_health_packet_version = partial(ensure_version, "CAN health", "CAN_HEALTH_PACKET_VERSION", "can_health_version")
ensure_health_packet_version = partial(ensure_version, "health", "HEALTH_PACKET_VERSION", "health_version")
class ALTERNATIVE_EXPERIENCE:
DEFAULT = 0
DISABLE_DISENGAGE_ON_GAS = 1
DISABLE_STOCK_AEB = 2
RAISE_LONGITUDINAL_LIMITS_TO_ISO_MAX = 8
ALLOW_AEB = 16
# sunnypilot
ENABLE_MADS = 2 ** 10
DISABLE_DISENGAGE_LATERAL_ON_BRAKE = 2 ** 11
class Panda:
# matches cereal.car.CarParams.SafetyModel
SAFETY_SILENT = 0
SAFETY_HONDA_NIDEC = 1
SAFETY_TOYOTA = 2
SAFETY_ELM327 = 3
SAFETY_GM = 4
SAFETY_HONDA_BOSCH_GIRAFFE = 5
SAFETY_FORD = 6
SAFETY_HYUNDAI = 8
SAFETY_CHRYSLER = 9
SAFETY_TESLA = 10
SAFETY_SUBARU = 11
SAFETY_MAZDA = 13
SAFETY_NISSAN = 14
SAFETY_VOLKSWAGEN_MQB = 15
SAFETY_ALLOUTPUT = 17
SAFETY_GM_ASCM = 18
SAFETY_NOOUTPUT = 19
SAFETY_HONDA_BOSCH = 20
SAFETY_VOLKSWAGEN_PQ = 21
SAFETY_SUBARU_PREGLOBAL = 22
SAFETY_HYUNDAI_LEGACY = 23
SAFETY_HYUNDAI_COMMUNITY = 24
SAFETY_STELLANTIS = 25
SAFETY_FAW = 26
SAFETY_BODY = 27
SAFETY_HYUNDAI_CANFD = 28
SERIAL_DEBUG = 0
SERIAL_ESP = 1
SERIAL_LIN1 = 2
SERIAL_LIN2 = 3
SERIAL_SOM_DEBUG = 4
USB_PIDS = (0xddee, 0xddcc)
REQUEST_IN = usb1.ENDPOINT_IN | usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE
REQUEST_OUT = usb1.ENDPOINT_OUT | usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE
HW_TYPE_UNKNOWN = b'\x00'
HW_TYPE_WHITE_PANDA = b'\x01'
HW_TYPE_GREY_PANDA = b'\x02'
HW_TYPE_BLACK_PANDA = b'\x03'
HW_TYPE_PEDAL = b'\x04'
HW_TYPE_UNO = b'\x05'
HW_TYPE_DOS = b'\x06'
HW_TYPE_RED_PANDA = b'\x07'
HW_TYPE_RED_PANDA_V2 = b'\x08'
HW_TYPE_TRES = b'\x09'
HW_TYPE_CUATRO = b'\x0a'
CAN_PACKET_VERSION = 4
HEALTH_PACKET_VERSION = 16
CAN_HEALTH_PACKET_VERSION = 5
HEALTH_STRUCT = struct.Struct("<IIIIIIIIBBBBBHBBBHfBBHBHHBB")
CAN_HEALTH_STRUCT = struct.Struct("<BIBBBBBBBBIIIIIIIHHBBBIIII")
F4_DEVICES = [HW_TYPE_WHITE_PANDA, HW_TYPE_GREY_PANDA, HW_TYPE_BLACK_PANDA, HW_TYPE_UNO, HW_TYPE_DOS]
H7_DEVICES = [HW_TYPE_RED_PANDA, HW_TYPE_RED_PANDA_V2, HW_TYPE_TRES, HW_TYPE_CUATRO]
INTERNAL_DEVICES = (HW_TYPE_UNO, HW_TYPE_DOS, HW_TYPE_TRES, HW_TYPE_CUATRO)
HAS_OBD = (HW_TYPE_BLACK_PANDA, HW_TYPE_UNO, HW_TYPE_DOS, HW_TYPE_RED_PANDA, HW_TYPE_RED_PANDA_V2, HW_TYPE_TRES, HW_TYPE_CUATRO)
MAX_FAN_RPMs = {
HW_TYPE_UNO: 5100,
HW_TYPE_DOS: 6500,
HW_TYPE_TRES: 6600,
HW_TYPE_CUATRO: 6600,
}
HARNESS_STATUS_NC = 0
HARNESS_STATUS_NORMAL = 1
HARNESS_STATUS_FLIPPED = 2
# first byte is for EPS scaling factor
FLAG_TOYOTA_ALT_BRAKE = (1 << 8)
FLAG_TOYOTA_STOCK_LONGITUDINAL = (2 << 8)
FLAG_TOYOTA_LTA = (4 << 8)
FLAG_TOYOTA_SECOC = (8 << 8)
FLAG_HONDA_ALT_BRAKE = 1
FLAG_HONDA_BOSCH_LONG = 2
FLAG_HONDA_NIDEC_ALT = 4
FLAG_HONDA_RADARLESS = 8
FLAG_HYUNDAI_EV_GAS = 1
FLAG_HYUNDAI_HYBRID_GAS = 2
FLAG_HYUNDAI_LONG = 4
FLAG_HYUNDAI_CAMERA_SCC = 8
FLAG_HYUNDAI_CANFD_HDA2 = 16
FLAG_HYUNDAI_CANFD_ALT_BUTTONS = 32
FLAG_HYUNDAI_ALT_LIMITS = 64
FLAG_HYUNDAI_CANFD_HDA2_ALT_STEERING = 128
FLAG_HYUNDAI_ESCC = 512
FLAG_TESLA_POWERTRAIN = 1
FLAG_TESLA_LONG_CONTROL = 2
FLAG_TESLA_RAVEN = 4
FLAG_VOLKSWAGEN_LONG_CONTROL = 1
FLAG_CHRYSLER_RAM_DT = 1
FLAG_CHRYSLER_RAM_HD = 2
FLAG_SUBARU_GEN2 = 1
FLAG_SUBARU_LONG = 2
FLAG_SUBARU_PREGLOBAL_REVERSED_DRIVER_TORQUE = 1
FLAG_NISSAN_ALT_EPS_BUS = 1
FLAG_NISSAN_LEAF = 512
FLAG_GM_HW_CAM = 1
FLAG_GM_HW_CAM_LONG = 2
FLAG_FORD_LONG_CONTROL = 1
FLAG_FORD_CANFD = 2
def __init__(self, serial: str | None = None, claim: bool = True, disable_checks: bool = True, can_speed_kbps: int = 500, cli: bool = True):
self._disable_checks = disable_checks
self._handle: BaseHandle
self._handle_open = False
self.can_rx_overflow_buffer = b''
self._can_speed_kbps = can_speed_kbps
if cli and serial is None:
self._connect_serial = self._cli_select_panda()
else:
self._connect_serial = serial
# connect and set mcu type
self.connect(claim)
def _cli_select_panda(self):
dfu_pandas = PandaDFU.list()
if len(dfu_pandas) > 0:
print("INFO: some attached pandas are in DFU mode.")
pandas = self.list()
if len(pandas) == 0:
print("INFO: panda not available")
return None
if len(pandas) == 1:
print(f"INFO: connecting to panda {pandas[0]}")
return pandas[0]
while True:
print("Multiple pandas available:")
pandas.sort()
for idx, serial in enumerate(pandas):
print(f"{[idx]}: {serial}")
try:
choice = int(input("Choose serial [0]:") or "0")
return pandas[choice]
except (ValueError, IndexError):
print("Enter a valid index.")
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
def close(self):
if self._handle_open:
self._handle.close()
self._handle_open = False
if self._context is not None:
self._context.close()
def connect(self, claim=True, wait=False):
self.close()
self._handle = None
while self._handle is None:
# try USB first, then SPI
self._context, self._handle, serial, self.bootstub, bcd = self.usb_connect(self._connect_serial, claim=claim, no_error=wait)
if self._handle is None:
self._context, self._handle, serial, self.bootstub, bcd = self.spi_connect(self._connect_serial)
if not wait:
break
if self._handle is None:
raise Exception("failed to connect to panda")
# Some fallback logic to determine panda and MCU type for old bootstubs,
# since we now support multiple MCUs and need to know which fw to flash.
# Three cases to consider:
# A) oldest bootstubs don't have any way to distinguish
# MCU or panda type
# B) slightly newer (~2 weeks after first C3's built) bootstubs
# have the panda type set in the USB bcdDevice
# C) latest bootstubs also implement the endpoint for panda type
self._bcd_hw_type = None
ret = self._handle.controlRead(Panda.REQUEST_IN, 0xc1, 0, 0, 0x40)
missing_hw_type_endpoint = self.bootstub and ret.startswith(b'\xff\x00\xc1\x3e\xde\xad\xd0\x0d')
if missing_hw_type_endpoint and bcd is not None:
self._bcd_hw_type = bcd
# For case A, we assume F4 MCU type, since all H7 pandas should be case B at worst
self._assume_f4_mcu = (self._bcd_hw_type is None) and missing_hw_type_endpoint
self._serial = serial
self._connect_serial = serial
self._handle_open = True
self._mcu_type = self.get_mcu_type()
self.health_version, self.can_version, self.can_health_version = self.get_packets_versions()
logger.debug("connected")
# disable openpilot's heartbeat checks
if self._disable_checks:
self.set_heartbeat_disabled()
self.set_power_save(0)
# reset comms
self.can_reset_communications()
# disable automatic CAN-FD switching
for bus in range(PANDA_BUS_CNT):
self.set_canfd_auto(bus, False)
# set CAN speed
for bus in range(PANDA_BUS_CNT):
self.set_can_speed_kbps(bus, self._can_speed_kbps)
@property
def spi(self) -> bool:
return isinstance(self._handle, PandaSpiHandle)
@classmethod
def spi_connect(cls, serial, ignore_version=False):
# get UID to confirm slave is present and up
handle = None
spi_serial = None
bootstub = None
spi_version = None
try:
handle = PandaSpiHandle()
# connect by protcol version
try:
dat = handle.get_protocol_version()
spi_serial = binascii.hexlify(dat[:12]).decode()
pid = dat[13]
if pid not in (0xcc, 0xee):
raise PandaSpiException("invalid bootstub status")
bootstub = pid == 0xee
spi_version = dat[14]
except PandaSpiException:
# fallback, we'll raise a protocol mismatch below
dat = handle.controlRead(Panda.REQUEST_IN, 0xc3, 0, 0, 12, timeout=100)
spi_serial = binascii.hexlify(dat).decode()
bootstub = Panda.flasher_present(handle)
spi_version = 0
except PandaSpiException:
pass
# no connection or wrong panda
if None in (spi_serial, bootstub) or (serial is not None and (spi_serial != serial)):
handle = None
spi_serial = None
bootstub = False
# ensure our protocol version matches the panda
if handle is not None and not ignore_version:
if spi_version != handle.PROTOCOL_VERSION:
err = f"panda protocol mismatch: expected {handle.PROTOCOL_VERSION}, got {spi_version}. reflash panda"
raise PandaProtocolMismatch(err)
return None, handle, spi_serial, bootstub, None
@classmethod
def usb_connect(cls, serial, claim=True, no_error=False):
handle, usb_serial, bootstub, bcd = None, None, None, None
context = usb1.USBContext()
context.open()
try:
for device in context.getDeviceList(skip_on_error=True):
if device.getVendorID() == 0xbbaa and device.getProductID() in cls.USB_PIDS:
try:
this_serial = device.getSerialNumber()
except Exception:
# Allow to ignore errors on reconnect. USB hubs need some time to initialize after panda reset
if not no_error:
logger.exception("failed to get serial number of panda")
continue
if serial is None or this_serial == serial:
logger.debug("opening device %s %s", this_serial, hex(device.getProductID()))
usb_serial = this_serial
bootstub = (device.getProductID() & 0xF0) == 0xe0
handle = device.open()
if sys.platform not in ("win32", "cygwin", "msys", "darwin"):
handle.setAutoDetachKernelDriver(True)
if claim:
handle.claimInterface(0)
# handle.setInterfaceAltSetting(0, 0) # Issue in USB stack
# bcdDevice wasn't always set to the hw type, ignore if it's the old constant
this_bcd = device.getbcdDevice()
if this_bcd is not None and this_bcd != 0x2300:
bcd = bytearray([this_bcd >> 8, ])
break
except Exception:
logger.exception("USB connect error")
usb_handle = None
if handle is not None:
usb_handle = PandaUsbHandle(handle)
else:
context.close()
return context, usb_handle, usb_serial, bootstub, bcd
def is_connected_spi(self):
return isinstance(self._handle, PandaSpiHandle)
def is_connected_usb(self):
return isinstance(self._handle, PandaUsbHandle)
@classmethod
def list(cls):
ret = cls.usb_list()
ret += cls.spi_list()
return list(set(ret))
@classmethod
def usb_list(cls):
ret = []
try:
with usb1.USBContext() as context:
for device in context.getDeviceList(skip_on_error=True):
if device.getVendorID() == 0xbbaa and device.getProductID() in cls.USB_PIDS:
try:
serial = device.getSerialNumber()
if len(serial) == 24:
ret.append(serial)
else:
logger.warning(f"found device with panda descriptors but invalid serial: {serial}", RuntimeWarning)
except Exception:
logger.exception("error connecting to panda")
except Exception:
logger.exception("exception while listing pandas")
return ret
@classmethod
def spi_list(cls):
_, _, serial, _, _ = cls.spi_connect(None, ignore_version=True)
if serial is not None:
return [serial, ]
return []
def reset(self, enter_bootstub=False, enter_bootloader=False, reconnect=True):
# no response is expected since it resets right away
timeout = 5000 if isinstance(self._handle, PandaSpiHandle) else 15000
try:
if enter_bootloader:
self._handle.controlWrite(Panda.REQUEST_IN, 0xd1, 0, 0, b'', timeout=timeout, expect_disconnect=True)
else:
if enter_bootstub:
self._handle.controlWrite(Panda.REQUEST_IN, 0xd1, 1, 0, b'', timeout=timeout, expect_disconnect=True)
else:
self._handle.controlWrite(Panda.REQUEST_IN, 0xd8, 0, 0, b'', timeout=timeout, expect_disconnect=True)
except Exception:
pass
self.close()
if not enter_bootloader and reconnect:
self.reconnect()
@property
def connected(self) -> bool:
return self._handle_open
def reconnect(self):
if self._handle_open:
self.close()
success = False
# wait up to 15 seconds
for _ in range(15*10):
try:
self.connect(claim=False, wait=True)
success = True
break
except Exception:
pass
time.sleep(0.1)
if not success:
raise Exception("reconnect failed")
@staticmethod
def flasher_present(handle: BaseHandle) -> bool:
fr = handle.controlRead(Panda.REQUEST_IN, 0xb0, 0, 0, 0xc)
return fr[4:8] == b"\xde\xad\xd0\x0d"
@staticmethod
def flash_static(handle, code, mcu_type):
assert mcu_type is not None, "must set valid mcu_type to flash"
# confirm flasher is present
assert Panda.flasher_present(handle)
# determine sectors to erase
apps_sectors_cumsum = accumulate(mcu_type.config.sector_sizes[1:])
last_sector = next((i + 1 for i, v in enumerate(apps_sectors_cumsum) if v > len(code)), -1)
assert last_sector >= 1, "Binary too small? No sector to erase."
assert last_sector < 7, "Binary too large! Risk of overwriting provisioning chunk."
# unlock flash
logger.info("flash: unlocking")
handle.controlWrite(Panda.REQUEST_IN, 0xb1, 0, 0, b'')
# erase sectors
logger.info(f"flash: erasing sectors 1 - {last_sector}")
for i in range(1, last_sector + 1):
handle.controlWrite(Panda.REQUEST_IN, 0xb2, i, 0, b'')
# flash over EP2
STEP = 0x10
logger.info("flash: flashing")
for i in range(0, len(code), STEP):
handle.bulkWrite(2, code[i:i + STEP])
# reset
logger.info("flash: resetting")
try:
handle.controlWrite(Panda.REQUEST_IN, 0xd8, 0, 0, b'', expect_disconnect=True)
except Exception:
pass
def flash(self, fn=None, code=None, reconnect=True):
if self.up_to_date(fn=fn):
logger.info("flash: already up to date")
return
if not fn:
fn = os.path.join(FW_PATH, self._mcu_type.config.app_fn)
assert os.path.isfile(fn)
logger.debug("flash: main version is %s", self.get_version())
if not self.bootstub:
self.reset(enter_bootstub=True)
assert(self.bootstub)
if code is None:
with open(fn, "rb") as f:
code = f.read()
# get version
logger.debug("flash: bootstub version is %s", self.get_version())
# do flash
Panda.flash_static(self._handle, code, mcu_type=self._mcu_type)
# reconnect
if reconnect:
self.reconnect()
def recover(self, timeout: int | None = 60, reset: bool = True) -> bool:
dfu_serial = self.get_dfu_serial()
if reset:
self.reset(enter_bootstub=True)
self.reset(enter_bootloader=True)
if not self.wait_for_dfu(dfu_serial, timeout=timeout):
return False
dfu = PandaDFU(dfu_serial)
dfu.recover()
# reflash after recover
self.connect(True, True)
self.flash()
return True
@staticmethod
def wait_for_dfu(dfu_serial: str | None, timeout: int | None = None) -> bool:
t_start = time.monotonic()
dfu_list = PandaDFU.list()
while (dfu_serial is None and len(dfu_list) == 0) or (dfu_serial is not None and dfu_serial not in dfu_list):
logger.debug("waiting for DFU...")
time.sleep(0.1)
if timeout is not None and (time.monotonic() - t_start) > timeout:
return False
dfu_list = PandaDFU.list()
return True
@staticmethod
def wait_for_panda(serial: str | None, timeout: int) -> bool:
t_start = time.monotonic()
serials = Panda.list()
while (serial is None and len(serials) == 0) or (serial is not None and serial not in serials):
logger.debug("waiting for panda...")
time.sleep(0.1)
if timeout is not None and (time.monotonic() - t_start) > timeout:
return False
serials = Panda.list()
return True
def up_to_date(self, fn=None) -> bool:
current = self.get_signature()
if fn is None:
fn = os.path.join(FW_PATH, self.get_mcu_type().config.app_fn)
expected = Panda.get_signature_from_firmware(fn)
return (current == expected)
def call_control_api(self, msg):
self._handle.controlWrite(Panda.REQUEST_OUT, msg, 0, 0, b'')
# ******************* health *******************
@ensure_health_packet_version
def health(self):
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xd2, 0, 0, self.HEALTH_STRUCT.size)
a = self.HEALTH_STRUCT.unpack(dat)
return {
"uptime": a[0],
"voltage": a[1],
"current": a[2],
"safety_tx_blocked": a[3],
"safety_rx_invalid": a[4],
"tx_buffer_overflow": a[5],
"rx_buffer_overflow": a[6],
"faults": a[7],
"ignition_line": a[8],
"ignition_can": a[9],
"controls_allowed": a[10],
"car_harness_status": a[11],
"safety_mode": a[12],
"safety_param": a[13],
"fault_status": a[14],
"power_save_enabled": a[15],
"heartbeat_lost": a[16],
"alternative_experience": a[17],
"interrupt_load": a[18],
"fan_power": a[19],
"safety_rx_checks_invalid": a[20],
"spi_checksum_error_count": a[21],
"fan_stall_count": a[22],
"sbu1_voltage_mV": a[23],
"sbu2_voltage_mV": a[24],
"som_reset_triggered": a[25],
"controls_allowed_lat": a[26],
}
@ensure_can_health_packet_version
def can_health(self, can_number):
LEC_ERROR_CODE = {
0: "No error",
1: "Stuff error",
2: "Form error",
3: "AckError",
4: "Bit1Error",
5: "Bit0Error",
6: "CRCError",
7: "NoChange",
}
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xc2, int(can_number), 0, self.CAN_HEALTH_STRUCT.size)
a = self.CAN_HEALTH_STRUCT.unpack(dat)
return {
"bus_off": a[0],
"bus_off_cnt": a[1],
"error_warning": a[2],
"error_passive": a[3],
"last_error": LEC_ERROR_CODE[a[4]],
"last_stored_error": LEC_ERROR_CODE[a[5]],
"last_data_error": LEC_ERROR_CODE[a[6]],
"last_data_stored_error": LEC_ERROR_CODE[a[7]],
"receive_error_cnt": a[8],
"transmit_error_cnt": a[9],
"total_error_cnt": a[10],
"total_tx_lost_cnt": a[11],
"total_rx_lost_cnt": a[12],
"total_tx_cnt": a[13],
"total_rx_cnt": a[14],
"total_fwd_cnt": a[15],
"total_tx_checksum_error_cnt": a[16],
"can_speed": a[17],
"can_data_speed": a[18],
"canfd_enabled": a[19],
"brs_enabled": a[20],
"canfd_non_iso": a[21],
"irq0_call_rate": a[22],
"irq1_call_rate": a[23],
"irq2_call_rate": a[24],
"can_core_reset_count": a[25],
}
# ******************* control *******************
def get_version(self):
return self._handle.controlRead(Panda.REQUEST_IN, 0xd6, 0, 0, 0x40).decode('utf8')
@staticmethod
def get_signature_from_firmware(fn) -> bytes:
with open(fn, 'rb') as f:
f.seek(-128, 2) # Seek from end of file
return f.read(128)
def get_signature(self) -> bytes:
part_1 = self._handle.controlRead(Panda.REQUEST_IN, 0xd3, 0, 0, 0x40)
part_2 = self._handle.controlRead(Panda.REQUEST_IN, 0xd4, 0, 0, 0x40)
return bytes(part_1 + part_2)
def get_type(self):
ret = self._handle.controlRead(Panda.REQUEST_IN, 0xc1, 0, 0, 0x40)
# old bootstubs don't implement this endpoint, see comment in Panda.device
if self._bcd_hw_type is not None and (ret is None or len(ret) != 1):
ret = self._bcd_hw_type
return ret
# Returns tuple with health packet version and CAN packet/USB packet version
def get_packets_versions(self):
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xdd, 0, 0, 3)
if dat and len(dat) == 3:
a = struct.unpack("BBB", dat)
return (a[0], a[1], a[2])
else:
return (0, 0, 0)
def get_mcu_type(self) -> McuType:
hw_type = self.get_type()
if hw_type in Panda.F4_DEVICES:
return McuType.F4
elif hw_type in Panda.H7_DEVICES:
return McuType.H7
else:
# have to assume F4, see comment in Panda.connect
if self._assume_f4_mcu:
return McuType.F4
raise ValueError(f"unknown HW type: {hw_type}")
def has_obd(self):
return self.get_type() in Panda.HAS_OBD
def is_internal(self):
return self.get_type() in Panda.INTERNAL_DEVICES
def get_serial(self):
"""
Returns the comma-issued dongle ID from our provisioning
"""
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xd0, 0, 0, 0x20)
hashsig, calc_hash = dat[0x1c:], hashlib.sha1(dat[0:0x1c]).digest()[0:4]
assert(hashsig == calc_hash)
return [dat[0:0x10].decode("utf8"), dat[0x10:0x10 + 10].decode("utf8")]
def get_usb_serial(self):
"""
Returns the serial number reported from the USB descriptor;
matches the MCU UID
"""
return self._serial
def get_dfu_serial(self):
return PandaDFU.st_serial_to_dfu_serial(self._serial, self._mcu_type)
def get_uid(self):
"""
Returns the UID from the MCU
"""
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xc3, 0, 0, 12)
return binascii.hexlify(dat).decode()
def get_secret(self):
return self._handle.controlRead(Panda.REQUEST_IN, 0xd0, 1, 0, 0x10)
def get_interrupt_call_rate(self, irqnum):
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xc4, int(irqnum), 0, 4)
return struct.unpack("I", dat)[0]
# ******************* configuration *******************
def set_power_save(self, power_save_enabled=0):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe7, int(power_save_enabled), 0, b'')
def set_safety_mode(self, mode=SAFETY_SILENT, param=0):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xdc, mode, param, b'')
def set_obd(self, obd):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xdb, int(obd), 0, b'')
def set_can_loopback(self, enable):
# set can loopback mode for all buses
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe5, int(enable), 0, b'')
def set_can_enable(self, bus_num, enable):
# sets the can transceiver enable pin
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf4, int(bus_num), int(enable), b'')
def set_can_speed_kbps(self, bus, speed):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xde, bus, int(speed * 10), b'')
def set_can_data_speed_kbps(self, bus, speed):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf9, bus, int(speed * 10), b'')
def set_canfd_non_iso(self, bus, non_iso):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xfc, bus, int(non_iso), b'')
def set_canfd_auto(self, bus, auto):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe8, bus, int(auto), b'')
def set_uart_baud(self, uart, rate):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe4, uart, int(rate / 300), b'')
def set_uart_parity(self, uart, parity):
# parity, 0=off, 1=even, 2=odd
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe2, uart, parity, b'')
def set_uart_callback(self, uart, install):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe3, uart, int(install), b'')
# ******************* can *******************
# The panda will NAK CAN writes when there is CAN congestion.
# libusb will try to send it again, with a max timeout.
# Timeout is in ms. If set to 0, the timeout is infinite.
CAN_SEND_TIMEOUT_MS = 10
def can_reset_communications(self):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xc0, 0, 0, b'')
@ensure_can_packet_version
def can_send_many(self, arr, *, fd=False, timeout=CAN_SEND_TIMEOUT_MS):
snds = pack_can_buffer(arr, fd=fd)
for tx in snds:
while len(tx) > 0:
bs = self._handle.bulkWrite(3, tx, timeout=timeout)
tx = tx[bs:]
def can_send(self, addr, dat, bus, *, fd=False, timeout=CAN_SEND_TIMEOUT_MS):
self.can_send_many([[addr, dat, bus]], fd=fd, timeout=timeout)
@ensure_can_packet_version
def can_recv(self):
dat = bytearray()
while True:
try:
dat = self._handle.bulkRead(1, 16384) # Max receive batch size + 2 extra reserve frames
break
except (usb1.USBErrorIO, usb1.USBErrorOverflow):
logger.error("CAN: BAD RECV, RETRYING")
time.sleep(0.1)
msgs, self.can_rx_overflow_buffer = unpack_can_buffer(self.can_rx_overflow_buffer + dat)
return msgs
def can_clear(self, bus):
"""Clears all messages from the specified internal CAN ringbuffer as
though it were drained.
Args:
bus (int): can bus number to clear a tx queue, or 0xFFFF to clear the
global can rx queue.
"""
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf1, bus, 0, b'')
# ******************* isotp *******************
def isotp_send(self, addr, dat, bus, recvaddr=None, subaddr=None):
return isotp_send(self, dat, addr, bus, recvaddr, subaddr)
def isotp_recv(self, addr, bus=0, sendaddr=None, subaddr=None):
return isotp_recv(self, addr, bus, sendaddr, subaddr)
# ******************* serial *******************
def serial_read(self, port_number):
ret = []
while 1:
lret = bytes(self._handle.controlRead(Panda.REQUEST_IN, 0xe0, port_number, 0, 0x40))
if len(lret) == 0:
break
ret.append(lret)
return b''.join(ret)
def serial_write(self, port_number, ln):
ret = 0
if isinstance(ln, str):
ln = bytes(ln, 'utf-8')
for i in range(0, len(ln), 0x20):
ret += self._handle.bulkWrite(2, struct.pack("B", port_number) + ln[i:i + 0x20])
return ret
def serial_clear(self, port_number):
"""Clears all messages (tx and rx) from the specified internal uart
ringbuffer as though it were drained.
Args:
port_number (int): port number of the uart to clear.
"""
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf2, port_number, 0, b'')
def send_heartbeat(self, engaged=True):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf3, engaged, 0, b'')
# disable heartbeat checks for use outside of openpilot
# sending a heartbeat will reenable the checks
def set_heartbeat_disabled(self):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf8, 0, 0, b'')
# ****************** Timer *****************
def get_microsecond_timer(self):
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xa8, 0, 0, 4)
return struct.unpack("I", dat)[0]
# ******************* IR *******************
def set_ir_power(self, percentage):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xb0, int(percentage), 0, b'')
# ******************* Fan ******************
def set_fan_power(self, percentage):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xb1, int(percentage), 0, b'')
def get_fan_rpm(self):
dat = self._handle.controlRead(Panda.REQUEST_IN, 0xb2, 0, 0, 2)
a = struct.unpack("H", dat)
return a[0]
# ****************** Siren *****************
def set_siren(self, enabled):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf6, int(enabled), 0, b'')
# ****************** Debug *****************
def set_green_led(self, enabled):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf7, int(enabled), 0, b'')
def set_clock_source_period(self, period):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe6, period, 0, b'')
def force_relay_drive(self, intercept_relay_drive, ignition_relay_drive):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xc5, (int(intercept_relay_drive) | int(ignition_relay_drive) << 1), 0, b'')
def read_som_gpio(self) -> bool:
r = self._handle.controlRead(Panda.REQUEST_IN, 0xc6, 0, 0, 1)
return r[0] == 1