Files
panda-meb/board/safety.h
DevTekVE 4c2ccd7fe5 Modular Assistive Driving System (MADS) (#40)
* alternative experience

* safety init

* fix

* more update

* not really

* misra

* Add Custom MIT License (#38)

* brake check was not handled

* revert

* alt -> lkas

* explicit checks

* support toyota and ford

* rename

* hyundai can-fd support

* only allow lkas if enabled

* hyundai: main button handling

* revert

* hyundai: main button heartbeat

* add logging for controls allowed lateral

* fix panda safety

* ford btn

* toyota btn

* fca btn

* honda btn

* mads safety tests

* more tests

* safety misra

* safety mutation

* misra

* mutation experiment

* fix

* ford test main button

* ford test lkas button

* more ford test

* hyundai lkas and main

* more ford

* hyundai canfd

* rename

* rename

* cleaner

* more fixes

* more hyundai tests

* no longer needed

* thanks for tests!

* more tests for lat

* more explicit

* make sure to reset

* try this out

* probably needed

* move

* misra

* not needed

* move to safety_mads

* not really needed

* remove

* MADS: Refactor MADS safety with improved state management (pull request #46)

Refactor MADS safety with improved state management

This commit introduces a major refactoring of the MADS safety module, improving state management and control flow. Key changes include:

Core Changes:
- Introduced a MADSState struct to centralize state management
- Removed global state variables in favor of structured state
- Implemented button transition handling with explicit state tracking (PRESSED/RELEASED/NO_CHANGE)
- Added state flags for button availability detection
- Simplified lateral control permission logic

Button Handling:
- Separated main button and LKAS button state tracking
- Added independent engagement states for each button
- Improved button press detection across multiple platforms
- Added support for main and LKAS buttons on Hyundai platforms
- Modified ACC main state handling

Testing:
- Added comprehensive test coverage for MADS state transitions
- Added new MADS-specific test base class for consistent testing across platforms
- Added mutation testing for state management
- Extended timeout for mutation tests from 5 to 8 minutes
- Added extensive button press validation tests
- Enhanced debugging output in replay drive tests

The refactored code provides a more organized implementation of MADS safety features while maintaining compatibility with existing safety checks.

* adding note

* adding ford (WIP)

* adding honda (WIP)

* adding toyota (WIP)

* adding chrysler (WIP)

* Standardize Button State Handling Across Platforms

Refactor button state handling by replacing integer constants with an enumerated `ButtonState` type and updating logic to improve readability and maintainability. This change affects button press detection in Ford, Honda, Hyundai, and Toyota safety modules and aligns them with a unified MADS button state approach. Enums provide a clearer understanding of button states and transitions, facilitating easier maintenance and future enhancements.

* Disable LKAS button press logic in Honda and Toyota safety.

The code for processing LKAS button presses has been commented out in both Honda and Toyota safety implementations. This change aims to investigate or temporarily halt the button press effects without removing the logic altogether. It will be important to test for any impacts this may have on vehicle control functionality.

* Remove commented out code in toyota_rx_hook function

This commit cleans up the toyota_rx_hook function by removing unnecessary commented-out code that checks for LKAS button presses on bus 2. This helps improve code readability and maintainability without altering the existing functionality.

* GM, mazda, nissan, subaru (global & preglobal)

* Honda LKAS

* Revert "Remove commented out code in toyota_rx_hook function"

This reverts commit d6b012c01a08118d91fad56c9f6ac2f92b671968.

* Toyota, Subaru Global LKAS

* nissan fix

* gm fix

* use speed msg to force rx

* im bored

* misra

* subaru/toyota/honda

* nope

* attempt

* go through all buttons

* try nissan

* more nissan

* nissan tests passed!

* subaru lkas test (not sure why it's not passing 2 and 3 values)

* Improved code organization in safety_subaru.h and test_subaru.py

This commit includes a minor restructuring in safety_subaru.h and test_subaru.py for better readability and flow. The condition check in safety_subaru.h for lkas_hud now has explicit parentheses. With regard to test_subaru.py, an unnecessary import was removed, and the sequence of steps in the test was reordered - now enabling mads and cleaning up mads_states happens before each subtest.

* Refactor tests to use _speed_msg instead of _user_brake_msg.

Updated the MADS safety tests to utilize the _speed_msg(0) function call in place of _user_brake_msg(False).

* Reworking the tests a little for clarity

* disabling lkas again on toyota temporarily

* fix mads condition to engage

* hyundai and honda good with new tests

* Redoing more tests

* update for safety tick ensuring mads control is exited while lagging

* Updating tests for toyota

* cleaning up tests on hkg

* commenting out temp_debug for future use

* revert

* constants

* cleanup

* format!

* match yota

* Apply suggestions from code review

* force

* explicit checks

* revert

---------

Co-authored-by: Jason Wen <haibin.wen3@gmail.com>
2024-12-05 19:39:36 -05:00

755 lines
27 KiB
C

#pragma once
#include "safety_declarations.h"
#include "can.h"
#include "sunnypilot/safety_mads.h"
// include the safety policies.
#include "safety/safety_defaults.h"
#include "safety/safety_honda.h"
#include "safety/safety_toyota.h"
#include "safety/safety_tesla.h"
#include "safety/safety_gm.h"
#include "safety/safety_ford.h"
#include "safety/safety_hyundai.h"
#include "safety/safety_chrysler.h"
#include "safety/safety_subaru.h"
#include "safety/safety_subaru_preglobal.h"
#include "safety/safety_mazda.h"
#include "safety/safety_nissan.h"
#include "safety/safety_volkswagen_mqb.h"
#include "safety/safety_volkswagen_pq.h"
#include "safety/safety_elm327.h"
#include "safety/safety_body.h"
// CAN-FD only safety modes
#ifdef CANFD
#include "safety/safety_hyundai_canfd.h"
#endif
// from cereal.car.CarParams.SafetyModel
#define SAFETY_SILENT 0U
#define SAFETY_HONDA_NIDEC 1U
#define SAFETY_TOYOTA 2U
#define SAFETY_ELM327 3U
#define SAFETY_GM 4U
#define SAFETY_HONDA_BOSCH_GIRAFFE 5U
#define SAFETY_FORD 6U
#define SAFETY_HYUNDAI 8U
#define SAFETY_CHRYSLER 9U
#define SAFETY_TESLA 10U
#define SAFETY_SUBARU 11U
#define SAFETY_MAZDA 13U
#define SAFETY_NISSAN 14U
#define SAFETY_VOLKSWAGEN_MQB 15U
#define SAFETY_ALLOUTPUT 17U
#define SAFETY_GM_ASCM 18U
#define SAFETY_NOOUTPUT 19U
#define SAFETY_HONDA_BOSCH 20U
#define SAFETY_VOLKSWAGEN_PQ 21U
#define SAFETY_SUBARU_PREGLOBAL 22U
#define SAFETY_HYUNDAI_LEGACY 23U
#define SAFETY_HYUNDAI_COMMUNITY 24U
#define SAFETY_STELLANTIS 25U
#define SAFETY_FAW 26U
#define SAFETY_BODY 27U
#define SAFETY_HYUNDAI_CANFD 28U
uint32_t GET_BYTES(const CANPacket_t *msg, int start, int len) {
uint32_t ret = 0U;
for (int i = 0; i < len; i++) {
const uint32_t shift = i * 8;
ret |= (((uint32_t)msg->data[start + i]) << shift);
}
return ret;
}
const int MAX_WRONG_COUNTERS = 5;
// This can be set by the safety hooks
bool controls_allowed = false;
bool relay_malfunction = false;
bool gas_pressed = false;
bool gas_pressed_prev = false;
bool brake_pressed = false;
bool brake_pressed_prev = false;
bool regen_braking = false;
bool regen_braking_prev = false;
bool cruise_engaged_prev = false;
struct sample_t vehicle_speed;
bool vehicle_moving = false;
bool acc_main_on = false; // referred to as "ACC off" in ISO 15622:2018
int cruise_button_prev = 0;
bool safety_rx_checks_invalid = false;
// for safety modes with torque steering control
int desired_torque_last = 0; // last desired steer torque
int rt_torque_last = 0; // last desired torque for real time check
int valid_steer_req_count = 0; // counter for steer request bit matching non-zero torque
int invalid_steer_req_count = 0; // counter to allow multiple frames of mismatching torque request bit
struct sample_t torque_meas; // last 6 motor torques produced by the eps
struct sample_t torque_driver; // last 6 driver torques measured
uint32_t ts_torque_check_last = 0;
uint32_t ts_steer_req_mismatch_last = 0; // last timestamp steer req was mismatched with torque
// state for controls_allowed timeout logic
bool heartbeat_engaged = false; // openpilot enabled, passed in heartbeat USB command
uint32_t heartbeat_engaged_mismatches = 0; // count of mismatches between heartbeat_engaged and controls_allowed
// for safety modes with angle steering control
uint32_t ts_angle_last = 0;
int desired_angle_last = 0;
struct sample_t angle_meas; // last 6 steer angles/curvatures
int alternative_experience = 0;
// time since safety mode has been changed
uint32_t safety_mode_cnt = 0U;
uint16_t current_safety_mode = SAFETY_SILENT;
uint16_t current_safety_param = 0;
static const safety_hooks *current_hooks = &nooutput_hooks;
safety_config current_safety_config;
static bool is_lat_active(void) {
return controls_allowed || mads_is_lateral_control_allowed_by_mads();
}
static bool is_msg_valid(RxCheck addr_list[], int index) {
bool valid = true;
if (index != -1) {
if (!addr_list[index].status.valid_checksum || !addr_list[index].status.valid_quality_flag || (addr_list[index].status.wrong_counters >= MAX_WRONG_COUNTERS)) {
valid = false;
controls_allowed = false;
}
}
return valid;
}
static int get_addr_check_index(const CANPacket_t *to_push, RxCheck addr_list[], const int len) {
int bus = GET_BUS(to_push);
int addr = GET_ADDR(to_push);
int length = GET_LEN(to_push);
int index = -1;
for (int i = 0; i < len; i++) {
// if multiple msgs are allowed, determine which one is present on the bus
if (!addr_list[i].status.msg_seen) {
for (uint8_t j = 0U; (j < MAX_ADDR_CHECK_MSGS) && (addr_list[i].msg[j].addr != 0); j++) {
if ((addr == addr_list[i].msg[j].addr) && (bus == addr_list[i].msg[j].bus) &&
(length == addr_list[i].msg[j].len)) {
addr_list[i].status.index = j;
addr_list[i].status.msg_seen = true;
break;
}
}
}
if (addr_list[i].status.msg_seen) {
int idx = addr_list[i].status.index;
if ((addr == addr_list[i].msg[idx].addr) && (bus == addr_list[i].msg[idx].bus) &&
(length == addr_list[i].msg[idx].len)) {
index = i;
break;
}
}
}
return index;
}
static void update_addr_timestamp(RxCheck addr_list[], int index) {
if (index != -1) {
uint32_t ts = microsecond_timer_get();
addr_list[index].status.last_timestamp = ts;
}
}
static void update_counter(RxCheck addr_list[], int index, uint8_t counter) {
if (index != -1) {
uint8_t expected_counter = (addr_list[index].status.last_counter + 1U) % (addr_list[index].msg[addr_list[index].status.index].max_counter + 1U);
addr_list[index].status.wrong_counters += (expected_counter == counter) ? -1 : 1;
addr_list[index].status.wrong_counters = CLAMP(addr_list[index].status.wrong_counters, 0, MAX_WRONG_COUNTERS);
addr_list[index].status.last_counter = counter;
}
}
static bool rx_msg_safety_check(const CANPacket_t *to_push,
const safety_config *cfg,
const safety_hooks *safety_hooks) {
int index = get_addr_check_index(to_push, cfg->rx_checks, cfg->rx_checks_len);
update_addr_timestamp(cfg->rx_checks, index);
if (index != -1) {
// checksum check
if ((safety_hooks->get_checksum != NULL) && (safety_hooks->compute_checksum != NULL) && cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].check_checksum) {
uint32_t checksum = safety_hooks->get_checksum(to_push);
uint32_t checksum_comp = safety_hooks->compute_checksum(to_push);
cfg->rx_checks[index].status.valid_checksum = checksum_comp == checksum;
} else {
cfg->rx_checks[index].status.valid_checksum = true;
}
// counter check (max_counter == 0 means skip check)
if ((safety_hooks->get_counter != NULL) && (cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].max_counter > 0U)) {
uint8_t counter = safety_hooks->get_counter(to_push);
update_counter(cfg->rx_checks, index, counter);
} else {
cfg->rx_checks[index].status.wrong_counters = 0U;
}
// quality flag check
if ((safety_hooks->get_quality_flag_valid != NULL) && cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].quality_flag) {
cfg->rx_checks[index].status.valid_quality_flag = safety_hooks->get_quality_flag_valid(to_push);
} else {
cfg->rx_checks[index].status.valid_quality_flag = true;
}
}
return is_msg_valid(cfg->rx_checks, index);
}
bool safety_rx_hook(const CANPacket_t *to_push) {
bool controls_allowed_prev = controls_allowed;
bool valid = rx_msg_safety_check(to_push, &current_safety_config, current_hooks);
if (valid) {
current_hooks->rx(to_push);
}
// reset mismatches on rising edge of controls_allowed to avoid rare race condition
if (controls_allowed && !controls_allowed_prev) {
heartbeat_engaged_mismatches = 0;
}
return valid;
}
static bool msg_allowed(const CANPacket_t *to_send, const CanMsg msg_list[], int len) {
int addr = GET_ADDR(to_send);
int bus = GET_BUS(to_send);
int length = GET_LEN(to_send);
bool allowed = false;
for (int i = 0; i < len; i++) {
if ((addr == msg_list[i].addr) && (bus == msg_list[i].bus) && (length == msg_list[i].len)) {
allowed = true;
break;
}
}
return allowed;
}
bool safety_tx_hook(CANPacket_t *to_send) {
bool whitelisted = msg_allowed(to_send, current_safety_config.tx_msgs, current_safety_config.tx_msgs_len);
if ((current_safety_mode == SAFETY_ALLOUTPUT) || (current_safety_mode == SAFETY_ELM327)) {
whitelisted = true;
}
const bool safety_allowed = current_hooks->tx(to_send);
return !relay_malfunction && whitelisted && safety_allowed;
}
int safety_fwd_hook(int bus_num, int addr) {
return (relay_malfunction ? -1 : current_hooks->fwd(bus_num, addr));
}
bool get_longitudinal_allowed(void) {
return controls_allowed && !gas_pressed_prev;
}
// Given a CRC-8 poly, generate a static lookup table to use with a fast CRC-8
// algorithm. Called at init time for safety modes using CRC-8.
void gen_crc_lookup_table_8(uint8_t poly, uint8_t crc_lut[]) {
for (uint16_t i = 0U; i <= 0xFFU; i++) {
uint8_t crc = (uint8_t)i;
for (int j = 0; j < 8; j++) {
if ((crc & 0x80U) != 0U) {
crc = (uint8_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
#ifdef CANFD
void gen_crc_lookup_table_16(uint16_t poly, uint16_t crc_lut[]) {
for (uint16_t i = 0; i < 256U; i++) {
uint16_t crc = i << 8U;
for (uint16_t j = 0; j < 8U; j++) {
if ((crc & 0x8000U) != 0U) {
crc = (uint16_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
#endif
// 1Hz safety function called by main. Now just a check for lagging safety messages
void safety_tick(const safety_config *cfg) {
const uint8_t MAX_MISSED_MSGS = 10U;
bool rx_checks_invalid = false;
uint32_t ts = microsecond_timer_get();
if (cfg != NULL) {
for (int i=0; i < cfg->rx_checks_len; i++) {
uint32_t elapsed_time = get_ts_elapsed(ts, cfg->rx_checks[i].status.last_timestamp);
// lag threshold is max of: 1s and MAX_MISSED_MSGS * expected timestep.
// Quite conservative to not risk false triggers.
// 2s of lag is worse case, since the function is called at 1Hz
uint32_t timestep = 1e6 / cfg->rx_checks[i].msg[cfg->rx_checks[i].status.index].frequency;
bool lagging = elapsed_time > MAX(timestep * MAX_MISSED_MSGS, 1e6);
cfg->rx_checks[i].status.lagging = lagging;
if (lagging) {
controls_allowed = false;
mads_exit_controls();
}
if (lagging || !is_msg_valid(cfg->rx_checks, i)) {
rx_checks_invalid = true;
}
}
}
safety_rx_checks_invalid = rx_checks_invalid;
}
static void relay_malfunction_set(void) {
relay_malfunction = true;
fault_occurred(FAULT_RELAY_MALFUNCTION);
}
void generic_rx_checks(bool stock_ecu_detected) {
// allow 1s of transition timeout after relay changes state before assessing malfunctioning
const uint32_t RELAY_TRNS_TIMEOUT = 1U;
// exit controls on rising edge of gas press
if (gas_pressed && !gas_pressed_prev && !(alternative_experience & ALT_EXP_DISABLE_DISENGAGE_ON_GAS)) {
controls_allowed = false;
}
gas_pressed_prev = gas_pressed;
// exit controls on rising edge of brake press
if (brake_pressed && (!brake_pressed_prev || vehicle_moving)) {
controls_allowed = false;
}
brake_pressed_prev = brake_pressed;
// exit controls on rising edge of regen paddle
if (regen_braking && (!regen_braking_prev || vehicle_moving)) {
controls_allowed = false;
}
regen_braking_prev = regen_braking;
// check if stock ECU is on bus broken by car harness
if ((safety_mode_cnt > RELAY_TRNS_TIMEOUT) && stock_ecu_detected) {
relay_malfunction_set();
}
mads_state_update(&vehicle_moving, &acc_main_on, brake_pressed || regen_braking, cruise_engaged_prev);
}
static void relay_malfunction_reset(void) {
relay_malfunction = false;
fault_recovered(FAULT_RELAY_MALFUNCTION);
}
// resets values and min/max for sample_t struct
static void reset_sample(struct sample_t *sample) {
for (int i = 0; i < MAX_SAMPLE_VALS; i++) {
sample->values[i] = 0;
}
update_sample(sample, 0);
}
int set_safety_hooks(uint16_t mode, uint16_t param) {
const safety_hook_config safety_hook_registry[] = {
{SAFETY_SILENT, &nooutput_hooks},
{SAFETY_HONDA_NIDEC, &honda_nidec_hooks},
{SAFETY_TOYOTA, &toyota_hooks},
{SAFETY_ELM327, &elm327_hooks},
{SAFETY_GM, &gm_hooks},
{SAFETY_HONDA_BOSCH, &honda_bosch_hooks},
{SAFETY_HYUNDAI, &hyundai_hooks},
{SAFETY_CHRYSLER, &chrysler_hooks},
{SAFETY_SUBARU, &subaru_hooks},
{SAFETY_VOLKSWAGEN_MQB, &volkswagen_mqb_hooks},
{SAFETY_NISSAN, &nissan_hooks},
{SAFETY_NOOUTPUT, &nooutput_hooks},
{SAFETY_HYUNDAI_LEGACY, &hyundai_legacy_hooks},
{SAFETY_MAZDA, &mazda_hooks},
{SAFETY_BODY, &body_hooks},
{SAFETY_FORD, &ford_hooks},
#ifdef CANFD
{SAFETY_HYUNDAI_CANFD, &hyundai_canfd_hooks},
#endif
#ifdef ALLOW_DEBUG
{SAFETY_TESLA, &tesla_hooks},
{SAFETY_SUBARU_PREGLOBAL, &subaru_preglobal_hooks},
{SAFETY_VOLKSWAGEN_PQ, &volkswagen_pq_hooks},
{SAFETY_ALLOUTPUT, &alloutput_hooks},
#endif
};
// reset state set by safety mode
safety_mode_cnt = 0U;
relay_malfunction = false;
gas_pressed = false;
gas_pressed_prev = false;
brake_pressed = false;
brake_pressed_prev = false;
regen_braking = false;
regen_braking_prev = false;
cruise_engaged_prev = false;
vehicle_moving = false;
acc_main_on = false;
cruise_button_prev = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_angle_last = 0;
desired_angle_last = 0;
ts_torque_check_last = 0;
ts_steer_req_mismatch_last = 0;
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
// reset samples
reset_sample(&vehicle_speed);
reset_sample(&torque_meas);
reset_sample(&torque_driver);
reset_sample(&angle_meas);
controls_allowed = false;
relay_malfunction_reset();
safety_rx_checks_invalid = false;
current_safety_config.rx_checks = NULL;
current_safety_config.rx_checks_len = 0;
current_safety_config.tx_msgs = NULL;
current_safety_config.tx_msgs_len = 0;
int set_status = -1; // not set
int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config);
for (int i = 0; i < hook_config_count; i++) {
if (safety_hook_registry[i].id == mode) {
current_hooks = safety_hook_registry[i].hooks;
current_safety_mode = mode;
current_safety_param = param;
set_status = 0; // set
}
}
if ((set_status == 0) && (current_hooks->init != NULL)) {
safety_config cfg = current_hooks->init(param);
current_safety_config.rx_checks = cfg.rx_checks;
current_safety_config.rx_checks_len = cfg.rx_checks_len;
current_safety_config.tx_msgs = cfg.tx_msgs;
current_safety_config.tx_msgs_len = cfg.tx_msgs_len;
// reset all dynamic fields in addr struct
for (int j = 0; j < current_safety_config.rx_checks_len; j++) {
current_safety_config.rx_checks[j].status = (RxStatus){0};
}
}
return set_status;
}
// convert a trimmed integer to signed 32 bit int
int to_signed(int d, int bits) {
int d_signed = d;
int max_value = (1 << MAX((bits - 1), 0));
if (d >= max_value) {
d_signed = d - (1 << MAX(bits, 0));
}
return d_signed;
}
// given a new sample, update the sample_t struct
void update_sample(struct sample_t *sample, int sample_new) {
for (int i = MAX_SAMPLE_VALS - 1; i > 0; i--) {
sample->values[i] = sample->values[i-1];
}
sample->values[0] = sample_new;
// get the minimum and maximum measured samples
sample->min = sample->values[0];
sample->max = sample->values[0];
for (int i = 1; i < MAX_SAMPLE_VALS; i++) {
if (sample->values[i] < sample->min) {
sample->min = sample->values[i];
}
if (sample->values[i] > sample->max) {
sample->max = sample->values[i];
}
}
}
static bool max_limit_check(int val, const int MAX_VAL, const int MIN_VAL) {
return (val > MAX_VAL) || (val < MIN_VAL);
}
// check that commanded torque value isn't too far from measured
static bool dist_to_meas_check(int val, int val_last, struct sample_t *val_meas,
const int MAX_RATE_UP, const int MAX_RATE_DOWN, const int MAX_ERROR) {
// *** val rate limit check ***
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// if we've exceeded the meas val, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN, MAX(val_meas->max, 0) + MAX_ERROR));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN, MIN(val_meas->min, 0) - MAX_ERROR));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// check that commanded value isn't fighting against driver
static bool driver_limit_check(int val, int val_last, const struct sample_t *val_driver,
const int MAX_VAL, const int MAX_RATE_UP, const int MAX_RATE_DOWN,
const int MAX_ALLOWANCE, const int DRIVER_FACTOR) {
// torque delta/rate limits
int highest_allowed_rl = MAX(val_last, 0) + MAX_RATE_UP;
int lowest_allowed_rl = MIN(val_last, 0) - MAX_RATE_UP;
// driver
int driver_max_limit = MAX_VAL + (MAX_ALLOWANCE + val_driver->max) * DRIVER_FACTOR;
int driver_min_limit = -MAX_VAL + (-MAX_ALLOWANCE + val_driver->min) * DRIVER_FACTOR;
// if we've exceeded the applied torque, we must start moving toward 0
int highest_allowed = MIN(highest_allowed_rl, MAX(val_last - MAX_RATE_DOWN,
MAX(driver_max_limit, 0)));
int lowest_allowed = MAX(lowest_allowed_rl, MIN(val_last + MAX_RATE_DOWN,
MIN(driver_min_limit, 0)));
// check for violation
return max_limit_check(val, highest_allowed, lowest_allowed);
}
// real time check, mainly used for steer torque rate limiter
static bool rt_rate_limit_check(int val, int val_last, const int MAX_RT_DELTA) {
// *** torque real time rate limit check ***
int highest_val = MAX(val_last, 0) + MAX_RT_DELTA;
int lowest_val = MIN(val_last, 0) - MAX_RT_DELTA;
// check for violation
return max_limit_check(val, highest_val, lowest_val);
}
// interp function that holds extreme values
static float interpolate(struct lookup_t xy, float x) {
int size = sizeof(xy.x) / sizeof(xy.x[0]);
float ret = xy.y[size - 1]; // default output is last point
// x is lower than the first point in the x array. Return the first point
if (x <= xy.x[0]) {
ret = xy.y[0];
} else {
// find the index such that (xy.x[i] <= x < xy.x[i+1]) and linearly interp
for (int i=0; i < (size - 1); i++) {
if (x < xy.x[i+1]) {
float x0 = xy.x[i];
float y0 = xy.y[i];
float dx = xy.x[i+1] - x0;
float dy = xy.y[i+1] - y0;
// dx should not be zero as xy.x is supposed to be monotonic
dx = MAX(dx, 0.0001);
ret = (dy * (x - x0) / dx) + y0;
break;
}
}
}
return ret;
}
int ROUND(float val) {
return val + ((val > 0.0) ? 0.5 : -0.5);
}
// Safety checks for longitudinal actuation
bool longitudinal_accel_checks(int desired_accel, const LongitudinalLimits limits) {
bool accel_valid = get_longitudinal_allowed() && !max_limit_check(desired_accel, limits.max_accel, limits.min_accel);
bool accel_inactive = desired_accel == limits.inactive_accel;
return !(accel_valid || accel_inactive);
}
bool longitudinal_speed_checks(int desired_speed, const LongitudinalLimits limits) {
return !get_longitudinal_allowed() && (desired_speed != limits.inactive_speed);
}
bool longitudinal_transmission_rpm_checks(int desired_transmission_rpm, const LongitudinalLimits limits) {
bool transmission_rpm_valid = get_longitudinal_allowed() && !max_limit_check(desired_transmission_rpm, limits.max_transmission_rpm, limits.min_transmission_rpm);
bool transmission_rpm_inactive = desired_transmission_rpm == limits.inactive_transmission_rpm;
return !(transmission_rpm_valid || transmission_rpm_inactive);
}
bool longitudinal_gas_checks(int desired_gas, const LongitudinalLimits limits) {
bool gas_valid = get_longitudinal_allowed() && !max_limit_check(desired_gas, limits.max_gas, limits.min_gas);
bool gas_inactive = desired_gas == limits.inactive_gas;
return !(gas_valid || gas_inactive);
}
bool longitudinal_brake_checks(int desired_brake, const LongitudinalLimits limits) {
bool violation = false;
violation |= !get_longitudinal_allowed() && (desired_brake != 0);
violation |= desired_brake > limits.max_brake;
return violation;
}
// Safety checks for torque-based steering commands
bool steer_torque_cmd_checks(int desired_torque, int steer_req, const SteeringLimits limits) {
bool violation = false;
uint32_t ts = microsecond_timer_get();
if (is_lat_active()) {
// *** global torque limit check ***
violation |= max_limit_check(desired_torque, limits.max_steer, -limits.max_steer);
// *** torque rate limit check ***
if (limits.type == TorqueDriverLimited) {
violation |= driver_limit_check(desired_torque, desired_torque_last, &torque_driver,
limits.max_steer, limits.max_rate_up, limits.max_rate_down,
limits.driver_torque_allowance, limits.driver_torque_factor);
} else {
violation |= dist_to_meas_check(desired_torque, desired_torque_last, &torque_meas,
limits.max_rate_up, limits.max_rate_down, limits.max_torque_error);
}
desired_torque_last = desired_torque;
// *** torque real time rate limit check ***
violation |= rt_rate_limit_check(desired_torque, rt_torque_last, limits.max_rt_delta);
// every RT_INTERVAL set the new limits
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_torque_check_last);
if (ts_elapsed > limits.max_rt_interval) {
rt_torque_last = desired_torque;
ts_torque_check_last = ts;
}
}
// no torque if controls is not allowed
if (!is_lat_active() && (desired_torque != 0)) {
violation = true;
}
// certain safety modes set their steer request bit low for one or more frame at a
// predefined max frequency to avoid steering faults in certain situations
bool steer_req_mismatch = (steer_req == 0) && (desired_torque != 0);
if (!limits.has_steer_req_tolerance) {
if (steer_req_mismatch) {
violation = true;
}
} else {
if (steer_req_mismatch) {
if (invalid_steer_req_count == 0) {
// disallow torque cut if not enough recent matching steer_req messages
if (valid_steer_req_count < limits.min_valid_request_frames) {
violation = true;
}
// or we've cut torque too recently in time
uint32_t ts_elapsed = get_ts_elapsed(ts, ts_steer_req_mismatch_last);
if (ts_elapsed < limits.min_valid_request_rt_interval) {
violation = true;
}
} else {
// or we're cutting more frames consecutively than allowed
if (invalid_steer_req_count >= limits.max_invalid_request_frames) {
violation = true;
}
}
valid_steer_req_count = 0;
ts_steer_req_mismatch_last = ts;
invalid_steer_req_count = MIN(invalid_steer_req_count + 1, limits.max_invalid_request_frames);
} else {
valid_steer_req_count = MIN(valid_steer_req_count + 1, limits.min_valid_request_frames);
invalid_steer_req_count = 0;
}
}
// reset to 0 if either controls is not allowed or there's a violation
if (violation || !is_lat_active()) {
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
desired_torque_last = 0;
rt_torque_last = 0;
ts_torque_check_last = ts;
ts_steer_req_mismatch_last = ts;
}
return violation;
}
// Safety checks for angle-based steering commands
bool steer_angle_cmd_checks(int desired_angle, bool steer_control_enabled, const SteeringLimits limits) {
bool violation = false;
if (is_lat_active() && steer_control_enabled) {
// convert floating point angle rate limits to integers in the scale of the desired angle on CAN,
// add 1 to not false trigger the violation. also fudge the speed by 1 m/s so rate limits are
// always slightly above openpilot's in case we read an updated speed in between angle commands
// TODO: this speed fudge can be much lower, look at data to determine the lowest reasonable offset
int delta_angle_up = (interpolate(limits.angle_rate_up_lookup, (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.) * limits.angle_deg_to_can) + 1.;
int delta_angle_down = (interpolate(limits.angle_rate_down_lookup, (vehicle_speed.min / VEHICLE_SPEED_FACTOR) - 1.) * limits.angle_deg_to_can) + 1.;
// allow down limits at zero since small floats will be rounded to 0
int highest_desired_angle = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up : delta_angle_down);
int lowest_desired_angle = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down : delta_angle_up);
// check that commanded angle value isn't too far from measured, used to limit torque for some safety modes
// ensure we start moving in direction of meas while respecting rate limits if error is exceeded
if (limits.enforce_angle_error && ((vehicle_speed.values[0] / VEHICLE_SPEED_FACTOR) > limits.angle_error_min_speed)) {
// the rate limits above are liberally above openpilot's to avoid false positives.
// likewise, allow a lower rate for moving towards meas when error is exceeded
int delta_angle_up_lower = interpolate(limits.angle_rate_up_lookup, (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.) * limits.angle_deg_to_can;
int delta_angle_down_lower = interpolate(limits.angle_rate_down_lookup, (vehicle_speed.max / VEHICLE_SPEED_FACTOR) + 1.) * limits.angle_deg_to_can;
int highest_desired_angle_lower = desired_angle_last + ((desired_angle_last > 0) ? delta_angle_up_lower : delta_angle_down_lower);
int lowest_desired_angle_lower = desired_angle_last - ((desired_angle_last >= 0) ? delta_angle_down_lower : delta_angle_up_lower);
lowest_desired_angle = MIN(MAX(lowest_desired_angle, angle_meas.min - limits.max_angle_error - 1), highest_desired_angle_lower);
highest_desired_angle = MAX(MIN(highest_desired_angle, angle_meas.max + limits.max_angle_error + 1), lowest_desired_angle_lower);
// don't enforce above the max steer
lowest_desired_angle = CLAMP(lowest_desired_angle, -limits.max_steer, limits.max_steer);
highest_desired_angle = CLAMP(highest_desired_angle, -limits.max_steer, limits.max_steer);
}
// check for violation;
violation |= max_limit_check(desired_angle, highest_desired_angle, lowest_desired_angle);
}
desired_angle_last = desired_angle;
// Angle should either be 0 or same as current angle while not steering
if (!steer_control_enabled) {
violation |= (limits.inactive_angle_is_zero ? (desired_angle != 0) :
max_limit_check(desired_angle, angle_meas.max + 1, angle_meas.min - 1));
}
// No angle control allowed when controls are not allowed
violation |= !is_lat_active() && steer_control_enabled;
return violation;
}
void pcm_cruise_check(bool cruise_engaged) {
// Enter controls on rising edge of stock ACC, exit controls if stock ACC disengages
if (!cruise_engaged) {
controls_allowed = false;
}
if (cruise_engaged && !cruise_engaged_prev) {
controls_allowed = true;
}
cruise_engaged_prev = cruise_engaged;
}