version: sunnypilot v2025.003.000 (dev) date: 2026-02-09T02:04:38 master commit: 254f55ac15a40343d7255f2f098de3442e0c4a6f
211 lines
6.8 KiB
Python
211 lines
6.8 KiB
Python
import itertools
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pyray as rl
|
|
|
|
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
|
|
|
from openpilot.common.transformations.camera import get_view_frame_from_calib_frame
|
|
from openpilot.selfdrive.controls.radard import RADAR_TO_CAMERA
|
|
|
|
|
|
RED = (255, 0, 0)
|
|
GREEN = (0, 255, 0)
|
|
BLUE = (0, 0, 255)
|
|
YELLOW = (255, 255, 0)
|
|
BLACK = (0, 0, 0)
|
|
WHITE = (255, 255, 255)
|
|
|
|
|
|
class UIParams:
|
|
lidar_x, lidar_y, lidar_zoom = 384, 960, 6
|
|
lidar_car_x, lidar_car_y = lidar_x / 2.0, lidar_y / 1.1
|
|
car_hwidth = 1.7272 / 2 * lidar_zoom
|
|
car_front = 2.6924 * lidar_zoom
|
|
car_back = 1.8796 * lidar_zoom
|
|
car_color = 110
|
|
|
|
|
|
UP = UIParams
|
|
|
|
METER_WIDTH = 20
|
|
|
|
|
|
class Calibration:
|
|
def __init__(self, num_px, rpy, intrinsic, calib_scale):
|
|
self.intrinsic = intrinsic
|
|
self.extrinsics_matrix = get_view_frame_from_calib_frame(rpy[0], rpy[1], rpy[2], 0.0)[:, :3]
|
|
self.zoom = calib_scale
|
|
|
|
def car_space_to_ff(self, x, y, z):
|
|
car_space_projective = np.column_stack((x, y, z)).T
|
|
|
|
ep = self.extrinsics_matrix.dot(car_space_projective)
|
|
kep = self.intrinsic.dot(ep)
|
|
return (kep[:-1, :] / kep[-1, :]).T
|
|
|
|
def car_space_to_bb(self, x, y, z):
|
|
pts = self.car_space_to_ff(x, y, z)
|
|
return pts / self.zoom
|
|
|
|
|
|
_COLOR_CACHE: dict[tuple[int, int, int], int] = {
|
|
(255, 0, 0): 1, # RED
|
|
(0, 255, 0): 2, # GREEN
|
|
(0, 0, 255): 3, # BLUE
|
|
(255, 255, 0): 4, # YELLOW
|
|
(0, 0, 0): 0, # BLACK
|
|
(255, 255, 255): 255, # WHITE
|
|
}
|
|
|
|
|
|
def find_color(lidar_surface, color):
|
|
return _COLOR_CACHE.get(color, 255)
|
|
|
|
|
|
def to_topdown_pt(y, x):
|
|
px, py = x * UP.lidar_zoom + UP.lidar_car_x, -y * UP.lidar_zoom + UP.lidar_car_y
|
|
if px > 0 and py > 0 and px < UP.lidar_x and py < UP.lidar_y:
|
|
return int(px), int(py)
|
|
return -1, -1
|
|
|
|
|
|
def draw_path(path, color, img, calibration, top_down, lid_color=None, z_off=0):
|
|
x, y, z = np.asarray(path.x), np.asarray(path.y), np.asarray(path.z) + z_off
|
|
pts = calibration.car_space_to_bb(x, y, z)
|
|
pts = np.round(pts).astype(int)
|
|
|
|
# draw lidar path point on lidar
|
|
# find color in 8 bit
|
|
if lid_color is not None and top_down is not None:
|
|
tcolor = find_color(top_down[0], lid_color)
|
|
for i in range(len(x)):
|
|
px, py = to_topdown_pt(x[i], y[i])
|
|
if px != -1:
|
|
top_down[1][px, py] = tcolor
|
|
|
|
height, width = img.shape[:2]
|
|
for x, y in pts:
|
|
if 1 < x < width - 1 and 1 < y < height - 1:
|
|
for a, b in itertools.permutations([-1, 0, -1], 2):
|
|
img[y + a, x + b] = color
|
|
|
|
|
|
def init_plots(arr, name_to_arr_idx, plot_xlims, plot_ylims, plot_names, plot_colors, plot_styles):
|
|
color_palette = {"r": (1, 0, 0), "g": (0, 1, 0), "b": (0, 0, 1), "k": (0, 0, 0), "y": (1, 1, 0), "p": (0, 1, 1), "m": (1, 0, 1)}
|
|
|
|
dpi = 90
|
|
fig = plt.figure(figsize=(575 / dpi, 600 / dpi), dpi=dpi)
|
|
canvas = FigureCanvasAgg(fig)
|
|
|
|
fig.set_facecolor((0.2, 0.2, 0.2))
|
|
|
|
axs = []
|
|
for pn in range(len(plot_ylims)):
|
|
ax = fig.add_subplot(len(plot_ylims), 1, len(axs) + 1)
|
|
ax.set_xlim(plot_xlims[pn][0], plot_xlims[pn][1])
|
|
ax.set_ylim(plot_ylims[pn][0], plot_ylims[pn][1])
|
|
ax.patch.set_facecolor((0.4, 0.4, 0.4))
|
|
axs.append(ax)
|
|
|
|
plots, idxs, plot_select = [], [], []
|
|
for i, pl_list in enumerate(plot_names):
|
|
for j, item in enumerate(pl_list):
|
|
(plot,) = axs[i].plot(arr[:, name_to_arr_idx[item]], label=item, color=color_palette[plot_colors[i][j]], linestyle=plot_styles[i][j])
|
|
plots.append(plot)
|
|
idxs.append(name_to_arr_idx[item])
|
|
plot_select.append(i)
|
|
axs[i].set_title(", ".join(f"{nm} ({cl})" for (nm, cl) in zip(pl_list, plot_colors[i], strict=False)), fontsize=10)
|
|
axs[i].tick_params(axis="x", colors="white")
|
|
axs[i].tick_params(axis="y", colors="white")
|
|
axs[i].title.set_color("white")
|
|
|
|
if i < len(plot_ylims) - 1:
|
|
axs[i].set_xticks([])
|
|
|
|
canvas.draw()
|
|
|
|
# Pre-create texture for plots (reuse each frame to avoid log spam)
|
|
w, h = canvas.get_width_height()
|
|
plot_image = rl.gen_image_color(w, h, rl.BLACK)
|
|
plot_texture = rl.load_texture_from_image(plot_image)
|
|
rl.unload_image(plot_image)
|
|
|
|
def draw_plots(arr):
|
|
for ax in axs:
|
|
ax.draw_artist(ax.patch)
|
|
for i in range(len(plots)):
|
|
plots[i].set_ydata(arr[:, idxs[i]])
|
|
axs[plot_select[i]].draw_artist(plots[i])
|
|
|
|
raw_data = np.ascontiguousarray(canvas.buffer_rgba(), dtype=np.uint8)
|
|
rl.update_texture(plot_texture, rl.ffi.cast("void *", raw_data.ctypes.data))
|
|
return plot_texture
|
|
|
|
return draw_plots
|
|
|
|
|
|
def plot_model(m, img, calibration, top_down):
|
|
if calibration is None or top_down is None:
|
|
return
|
|
|
|
for lead in m.leadsV3:
|
|
if lead.prob < 0.5:
|
|
continue
|
|
|
|
x, y = lead.x[0], lead.y[0]
|
|
x_std = lead.xStd[0]
|
|
x -= RADAR_TO_CAMERA
|
|
|
|
_, py_top = to_topdown_pt(x + x_std, y)
|
|
px, py_bottom = to_topdown_pt(x - x_std, y)
|
|
top_down[1][int(round(px - 4)) : int(round(px + 4)), py_top:py_bottom] = find_color(top_down[0], YELLOW)
|
|
|
|
for path, prob, _ in zip(m.laneLines, m.laneLineProbs, m.laneLineStds, strict=True):
|
|
color = (0, int(255 * prob), 0)
|
|
draw_path(path, color, img, calibration, top_down, YELLOW)
|
|
|
|
for edge, std in zip(m.roadEdges, m.roadEdgeStds, strict=True):
|
|
prob = max(1 - std, 0)
|
|
color = (int(255 * prob), 0, 0)
|
|
draw_path(edge, color, img, calibration, top_down, RED)
|
|
|
|
color = (255, 0, 0)
|
|
draw_path(m.position, color, img, calibration, top_down, RED, 1.22)
|
|
|
|
|
|
def plot_lead(rs, top_down):
|
|
for lead in [rs.leadOne, rs.leadTwo]:
|
|
if not lead.status:
|
|
continue
|
|
|
|
x = lead.dRel
|
|
px_left, py = to_topdown_pt(x, -10)
|
|
px_right, _ = to_topdown_pt(x, 10)
|
|
top_down[1][px_left:px_right, py] = find_color(top_down[0], RED)
|
|
|
|
|
|
def maybe_update_radar_points(lt, lid_overlay):
|
|
ar_pts = []
|
|
if lt is not None:
|
|
ar_pts = {}
|
|
for track in lt:
|
|
ar_pts[track.trackId] = [track.dRel, track.yRel, track.vRel, track.aRel]
|
|
for pt in ar_pts.values():
|
|
# negative here since radar is left positive
|
|
px, py = to_topdown_pt(pt[0], -pt[1])
|
|
if px != -1:
|
|
lid_overlay[px - 4 : px + 4, py - 4 : py + 4] = 0
|
|
lid_overlay[px - 2 : px + 2, py - 2 : py + 2] = 255
|
|
|
|
|
|
def get_blank_lid_overlay(UP):
|
|
lid_overlay = np.zeros((UP.lidar_x, UP.lidar_y), 'uint8')
|
|
# Draw the car.
|
|
lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)) : int(round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y - UP.car_front))] = UP.car_color
|
|
lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)) : int(round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y + UP.car_back))] = UP.car_color
|
|
lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)), int(round(UP.lidar_car_y - UP.car_front)) : int(round(UP.lidar_car_y + UP.car_back))] = UP.car_color
|
|
lid_overlay[int(round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y - UP.car_front)) : int(round(UP.lidar_car_y + UP.car_back))] = UP.car_color
|
|
return lid_overlay
|