sunnypilot v2026.02.09-4080

version: sunnypilot v2025.003.000 (dev)
date: 2026-02-09T02:04:38
master commit: 254f55ac15a40343d7255f2f098de3442e0c4a6f
This commit is contained in:
github-actions[bot]
2026-02-09 02:04:38 +00:00
commit 7fa972be6a
3996 changed files with 1485883 additions and 0 deletions

View File

206
tools/sim/bridge/common.py Normal file
View File

@@ -0,0 +1,206 @@
import signal
import threading
import functools
import numpy as np
from collections import namedtuple
from enum import Enum
from multiprocessing import Process, Queue, Value
from abc import ABC, abstractmethod
from opendbc.car.honda.values import CruiseButtons
from openpilot.common.params import Params
from openpilot.common.realtime import Ratekeeper
from openpilot.selfdrive.test.helpers import set_params_enabled
from openpilot.tools.sim.lib.common import SimulatorState, World
from openpilot.tools.sim.lib.simulated_car import SimulatedCar
from openpilot.tools.sim.lib.simulated_sensors import SimulatedSensors
QueueMessage = namedtuple("QueueMessage", ["type", "info"], defaults=[None])
class QueueMessageType(Enum):
START_STATUS = 0
CONTROL_COMMAND = 1
TERMINATION_INFO = 2
CLOSE_STATUS = 3
def control_cmd_gen(cmd: str):
return QueueMessage(QueueMessageType.CONTROL_COMMAND, cmd)
def rk_loop(function, hz, exit_event: threading.Event):
rk = Ratekeeper(hz, None)
while not exit_event.is_set():
function()
rk.keep_time()
class SimulatorBridge(ABC):
TICKS_PER_FRAME = 5
def __init__(self, dual_camera, high_quality):
set_params_enabled()
self.params = Params()
self.params.put_bool("AlphaLongitudinalEnabled", True)
self.rk = Ratekeeper(100, None)
self.dual_camera = dual_camera
self.high_quality = high_quality
self._exit_event: threading.Event | None = None
self._threads = []
self._keep_alive = True
self.started = Value('i', False)
signal.signal(signal.SIGTERM, self._on_shutdown)
self.simulator_state = SimulatorState()
self.world: World | None = None
self.past_startup_engaged = False
self.startup_button_prev = True
self.test_run = False
def _on_shutdown(self, signal, frame):
self.shutdown()
def shutdown(self):
self._keep_alive = False
def bridge_keep_alive(self, q: Queue, retries: int):
try:
self._run(q)
finally:
self.close("bridge terminated")
def close(self, reason):
self.started.value = False
if self._exit_event is not None:
self._exit_event.set()
if self.world is not None:
self.world.close(reason)
def run(self, queue, retries=-1):
bridge_p = Process(name="bridge", target=self.bridge_keep_alive, args=(queue, retries))
bridge_p.start()
return bridge_p
def print_status(self):
print(
f"""
State:
Ignition: {self.simulator_state.ignition} Engaged: {self.simulator_state.is_engaged}
""")
@abstractmethod
def spawn_world(self, q: Queue) -> World:
pass
def _run(self, q: Queue):
self.world = self.spawn_world(q)
self.simulated_car = SimulatedCar()
self.simulated_sensors = SimulatedSensors(self.dual_camera)
self._exit_event = threading.Event()
self.simulated_car_thread = threading.Thread(target=rk_loop, args=(functools.partial(self.simulated_car.update, self.simulator_state),
100, self._exit_event))
self.simulated_car_thread.start()
self.simulated_camera_thread = threading.Thread(target=rk_loop, args=(functools.partial(self.simulated_sensors.send_camera_images, self.world),
20, self._exit_event))
self.simulated_camera_thread.start()
# Simulation tends to be slow in the initial steps. This prevents lagging later
for _ in range(20):
self.world.tick()
while self._keep_alive:
throttle_out = steer_out = brake_out = 0.0
throttle_op = steer_op = brake_op = 0.0
self.simulator_state.cruise_button = 0
self.simulator_state.left_blinker = False
self.simulator_state.right_blinker = False
throttle_manual = steer_manual = brake_manual = 0.
# Read manual controls
if not q.empty():
message = q.get()
if message.type == QueueMessageType.CONTROL_COMMAND:
m = message.info.split('_')
if m[0] == "steer":
steer_manual = float(m[1])
elif m[0] == "throttle":
throttle_manual = float(m[1])
elif m[0] == "brake":
brake_manual = float(m[1])
elif m[0] == "cruise":
if m[1] == "down":
self.simulator_state.cruise_button = CruiseButtons.DECEL_SET
elif m[1] == "up":
self.simulator_state.cruise_button = CruiseButtons.RES_ACCEL
elif m[1] == "cancel":
self.simulator_state.cruise_button = CruiseButtons.CANCEL
elif m[1] == "main":
self.simulator_state.cruise_button = CruiseButtons.MAIN
elif m[0] == "blinker":
if m[1] == "left":
self.simulator_state.left_blinker = True
elif m[1] == "right":
self.simulator_state.right_blinker = True
elif m[0] == "ignition":
self.simulator_state.ignition = not self.simulator_state.ignition
elif m[0] == "reset":
self.world.reset()
elif m[0] == "quit":
break
self.simulator_state.user_brake = brake_manual
self.simulator_state.user_gas = throttle_manual
self.simulator_state.user_torque = steer_manual * -10000
steer_manual = steer_manual * -40
# Update openpilot on current sensor state
self.simulated_sensors.update(self.simulator_state, self.world)
self.simulated_car.sm.update(0)
self.simulator_state.is_engaged = self.simulated_car.sm['selfdriveState'].active
if self.simulator_state.is_engaged:
throttle_op = np.clip(self.simulated_car.sm['carControl'].actuators.accel / 1.6, 0.0, 1.0)
brake_op = np.clip(-self.simulated_car.sm['carControl'].actuators.accel / 4.0, 0.0, 1.0)
steer_op = self.simulated_car.sm['carControl'].actuators.steeringAngleDeg
self.past_startup_engaged = True
elif not self.past_startup_engaged and self.simulated_car.sm['selfdriveState'].engageable:
self.simulator_state.cruise_button = CruiseButtons.DECEL_SET if self.startup_button_prev else CruiseButtons.MAIN # force engagement on startup
self.startup_button_prev = not self.startup_button_prev
throttle_out = throttle_op if self.simulator_state.is_engaged else throttle_manual
brake_out = brake_op if self.simulator_state.is_engaged else brake_manual
steer_out = steer_op if self.simulator_state.is_engaged else steer_manual
self.world.apply_controls(steer_out, throttle_out, brake_out)
self.world.read_state()
self.world.read_sensors(self.simulator_state)
if self.world.exit_event.is_set():
self.shutdown()
if self.rk.frame % self.TICKS_PER_FRAME == 0:
self.world.tick()
self.world.read_cameras()
# don't print during test, so no print/IO Block between OP and metadrive processes
if not self.test_run and self.rk.frame % 25 == 0:
self.print_status()
self.started.value = True
self.rk.keep_time()

View File

@@ -0,0 +1,93 @@
import math
from multiprocessing import Queue
from metadrive.component.sensors.base_camera import _cuda_enable
from metadrive.component.map.pg_map import MapGenerateMethod
from openpilot.tools.sim.bridge.common import SimulatorBridge
from openpilot.tools.sim.bridge.metadrive.metadrive_common import RGBCameraRoad, RGBCameraWide
from openpilot.tools.sim.bridge.metadrive.metadrive_world import MetaDriveWorld
from openpilot.tools.sim.lib.camerad import W, H
def straight_block(length):
return {
"id": "S",
"pre_block_socket_index": 0,
"length": length
}
def curve_block(length, angle=45, direction=0):
return {
"id": "C",
"pre_block_socket_index": 0,
"length": length,
"radius": length,
"angle": angle,
"dir": direction
}
def create_map(track_size=60):
curve_len = track_size * 2
return dict(
type=MapGenerateMethod.PG_MAP_FILE,
lane_num=2,
lane_width=4.5,
config=[
None,
straight_block(track_size),
curve_block(curve_len, 90),
straight_block(track_size),
curve_block(curve_len, 90),
straight_block(track_size),
curve_block(curve_len, 90),
straight_block(track_size),
curve_block(curve_len, 90),
]
)
class MetaDriveBridge(SimulatorBridge):
TICKS_PER_FRAME = 5
def __init__(self, dual_camera, high_quality, test_duration=math.inf, test_run=False):
super().__init__(dual_camera, high_quality)
self.should_render = False
self.test_run = test_run
self.test_duration = test_duration if self.test_run else math.inf
def spawn_world(self, queue: Queue):
sensors = {
"rgb_road": (RGBCameraRoad, W, H, )
}
if self.dual_camera:
sensors["rgb_wide"] = (RGBCameraWide, W, H)
config = dict(
use_render=self.should_render,
vehicle_config=dict(
enable_reverse=False,
render_vehicle=False,
image_source="rgb_road",
),
sensors=sensors,
image_on_cuda=_cuda_enable,
image_observation=True,
interface_panel=[],
out_of_route_done=False,
on_continuous_line_done=False,
crash_vehicle_done=False,
crash_object_done=False,
arrive_dest_done=False,
traffic_density=0.0, # traffic is incredibly expensive
map_config=create_map(),
decision_repeat=1,
physics_world_step_size=self.TICKS_PER_FRAME/100,
preload_models=False,
show_logo=False,
anisotropic_filtering=False
)
return MetaDriveWorld(queue, config, self.test_duration, self.test_run, self.dual_camera)

View File

@@ -0,0 +1,37 @@
import numpy as np
from metadrive.component.sensors.rgb_camera import RGBCamera
from panda3d.core import Texture, GraphicsOutput
class CopyRamRGBCamera(RGBCamera):
"""Camera which copies its content into RAM during the render process, for faster image grabbing."""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.cpu_texture = Texture()
self.buffer.addRenderTexture(self.cpu_texture, GraphicsOutput.RTMCopyRam)
def get_rgb_array_cpu(self):
origin_img = self.cpu_texture
img = np.frombuffer(origin_img.getRamImage().getData(), dtype=np.uint8)
img = img.reshape((origin_img.getYSize(), origin_img.getXSize(), -1))
img = img[:,:,:3] # RGBA to RGB
# img = np.swapaxes(img, 1, 0)
img = img[::-1] # Flip on vertical axis
return img
class RGBCameraWide(CopyRamRGBCamera):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
lens = self.get_lens()
lens.setFov(120)
lens.setNear(0.1)
class RGBCameraRoad(CopyRamRGBCamera):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
lens = self.get_lens()
lens.setFov(40)
lens.setNear(0.1)

View File

@@ -0,0 +1,154 @@
import math
import time
import numpy as np
from collections import namedtuple
from panda3d.core import Vec3
from multiprocessing.connection import Connection
from metadrive.engine.core.engine_core import EngineCore
from metadrive.engine.core.image_buffer import ImageBuffer
from metadrive.envs.metadrive_env import MetaDriveEnv
from metadrive.obs.image_obs import ImageObservation
from openpilot.common.realtime import Ratekeeper
from openpilot.tools.sim.lib.common import vec3
from openpilot.tools.sim.lib.camerad import W, H
C3_POSITION = Vec3(0.0, 0, 1.22)
C3_HPR = Vec3(0, 0,0)
metadrive_simulation_state = namedtuple("metadrive_simulation_state", ["running", "done", "done_info"])
metadrive_vehicle_state = namedtuple("metadrive_vehicle_state", ["velocity", "position", "bearing", "steering_angle"])
def apply_metadrive_patches(arrive_dest_done=True):
# By default, metadrive won't try to use cuda images unless it's used as a sensor for vehicles, so patch that in
def add_image_sensor_patched(self, name: str, cls, args):
if self.global_config["image_on_cuda"]:# and name == self.global_config["vehicle_config"]["image_source"]:
sensor = cls(*args, self, cuda=True)
else:
sensor = cls(*args, self, cuda=False)
assert isinstance(sensor, ImageBuffer), "This API is for adding image sensor"
self.sensors[name] = sensor
EngineCore.add_image_sensor = add_image_sensor_patched
# we aren't going to use the built-in observation stack, so disable it to save time
def observe_patched(self, *args, **kwargs):
return self.state
ImageObservation.observe = observe_patched
# disable destination, we want to loop forever
def arrive_destination_patch(self, *args, **kwargs):
return False
if not arrive_dest_done:
MetaDriveEnv._is_arrive_destination = arrive_destination_patch
def metadrive_process(dual_camera: bool, config: dict, camera_array, wide_camera_array, image_lock,
controls_recv: Connection, simulation_state_send: Connection, vehicle_state_send: Connection,
exit_event, op_engaged, test_duration, test_run):
arrive_dest_done = config.pop("arrive_dest_done", True)
apply_metadrive_patches(arrive_dest_done)
road_image = np.frombuffer(camera_array.get_obj(), dtype=np.uint8).reshape((H, W, 3))
if dual_camera:
assert wide_camera_array is not None
wide_road_image = np.frombuffer(wide_camera_array.get_obj(), dtype=np.uint8).reshape((H, W, 3))
env = MetaDriveEnv(config)
def get_current_lane_info(vehicle):
_, lane_info, on_lane = vehicle.navigation._get_current_lane(vehicle)
lane_idx = lane_info[2] if lane_info is not None else None
return lane_idx, on_lane
def reset():
env.reset()
env.vehicle.config["max_speed_km_h"] = 1000
lane_idx_prev, _ = get_current_lane_info(env.vehicle)
simulation_state = metadrive_simulation_state(
running=True,
done=False,
done_info=None,
)
simulation_state_send.send(simulation_state)
return lane_idx_prev
lane_idx_prev = reset()
start_time = None
def get_cam_as_rgb(cam):
cam = env.engine.sensors[cam]
cam.get_cam().reparentTo(env.vehicle.origin)
cam.get_cam().setPos(C3_POSITION)
cam.get_cam().setHpr(C3_HPR)
img = cam.perceive(to_float=False)
if not isinstance(img, np.ndarray):
img = img.get() # convert cupy array to numpy
return img
rk = Ratekeeper(100, None)
steer_ratio = 8
vc = [0,0]
while not exit_event.is_set():
vehicle_state = metadrive_vehicle_state(
velocity=vec3(x=float(env.vehicle.velocity[0]), y=float(env.vehicle.velocity[1]), z=0),
position=env.vehicle.position,
bearing=float(math.degrees(env.vehicle.heading_theta)),
steering_angle=env.vehicle.steering * env.vehicle.MAX_STEERING
)
vehicle_state_send.send(vehicle_state)
if controls_recv.poll(0):
while controls_recv.poll(0):
steer_angle, gas, should_reset = controls_recv.recv()
steer_metadrive = steer_angle * 1 / (env.vehicle.MAX_STEERING * steer_ratio)
steer_metadrive = np.clip(steer_metadrive, -1, 1)
vc = [steer_metadrive, gas]
if should_reset:
lane_idx_prev = reset()
start_time = None
is_engaged = op_engaged.is_set()
if is_engaged and start_time is None:
start_time = time.monotonic()
if rk.frame % 5 == 0:
_, _, terminated, _, _ = env.step(vc)
timeout = True if start_time is not None and time.monotonic() - start_time >= test_duration else False
lane_idx_curr, on_lane = get_current_lane_info(env.vehicle)
out_of_lane = lane_idx_curr != lane_idx_prev or not on_lane
lane_idx_prev = lane_idx_curr
if terminated or ((out_of_lane or timeout) and test_run):
if terminated:
done_result = env.done_function("default_agent")
elif out_of_lane:
done_result = (True, {"out_of_lane" : True})
elif timeout:
done_result = (True, {"timeout" : True})
simulation_state = metadrive_simulation_state(
running=False,
done=done_result[0],
done_info=done_result[1],
)
simulation_state_send.send(simulation_state)
if dual_camera:
wide_road_image[...] = get_cam_as_rgb("rgb_wide")
road_image[...] = get_cam_as_rgb("rgb_road")
image_lock.release()
rk.keep_time()

View File

@@ -0,0 +1,132 @@
import ctypes
import functools
import multiprocessing
import numpy as np
import time
from multiprocessing import Pipe, Array
from openpilot.tools.sim.bridge.common import QueueMessage, QueueMessageType
from openpilot.tools.sim.bridge.metadrive.metadrive_process import (metadrive_process, metadrive_simulation_state,
metadrive_vehicle_state)
from openpilot.tools.sim.lib.common import SimulatorState, World
from openpilot.tools.sim.lib.camerad import W, H
class MetaDriveWorld(World):
def __init__(self, status_q, config, test_duration, test_run, dual_camera=False):
super().__init__(dual_camera)
self.status_q = status_q
self.camera_array = Array(ctypes.c_uint8, W*H*3)
self.road_image = np.frombuffer(self.camera_array.get_obj(), dtype=np.uint8).reshape((H, W, 3))
self.wide_camera_array = None
if dual_camera:
self.wide_camera_array = Array(ctypes.c_uint8, W*H*3)
self.wide_road_image = np.frombuffer(self.wide_camera_array.get_obj(), dtype=np.uint8).reshape((H, W, 3))
self.controls_send, self.controls_recv = Pipe()
self.simulation_state_send, self.simulation_state_recv = Pipe()
self.vehicle_state_send, self.vehicle_state_recv = Pipe()
self.exit_event = multiprocessing.Event()
self.op_engaged = multiprocessing.Event()
self.test_run = test_run
self.first_engage = None
self.last_check_timestamp = 0
self.distance_moved = 0
self.metadrive_process = multiprocessing.Process(name="metadrive process", target=
functools.partial(metadrive_process, dual_camera, config,
self.camera_array, self.wide_camera_array, self.image_lock,
self.controls_recv, self.simulation_state_send,
self.vehicle_state_send, self.exit_event, self.op_engaged, test_duration, self.test_run))
self.metadrive_process.start()
self.status_q.put(QueueMessage(QueueMessageType.START_STATUS, "starting"))
print("----------------------------------------------------------")
print("---- Spawning Metadrive world, this might take awhile ----")
print("----------------------------------------------------------")
self.vehicle_last_pos = self.vehicle_state_recv.recv().position # wait for a state message to ensure metadrive is launched
self.status_q.put(QueueMessage(QueueMessageType.START_STATUS, "started"))
self.steer_ratio = 15
self.vc = [0.0,0.0]
self.reset_time = 0
self.should_reset = False
def apply_controls(self, steer_angle, throttle_out, brake_out):
if (time.monotonic() - self.reset_time) > 2:
self.vc[0] = steer_angle
if throttle_out:
self.vc[1] = throttle_out
else:
self.vc[1] = -brake_out
else:
self.vc[0] = 0
self.vc[1] = 0
self.controls_send.send([*self.vc, self.should_reset])
self.should_reset = False
def read_state(self):
while self.simulation_state_recv.poll(0):
md_state: metadrive_simulation_state = self.simulation_state_recv.recv()
if md_state.done:
self.status_q.put(QueueMessage(QueueMessageType.TERMINATION_INFO, md_state.done_info))
self.exit_event.set()
def read_sensors(self, state: SimulatorState):
while self.vehicle_state_recv.poll(0):
md_vehicle: metadrive_vehicle_state = self.vehicle_state_recv.recv()
curr_pos = md_vehicle.position
state.velocity = md_vehicle.velocity
state.bearing = md_vehicle.bearing
state.steering_angle = md_vehicle.steering_angle
state.gps.from_xy(curr_pos)
state.valid = True
is_engaged = state.is_engaged
if is_engaged and self.first_engage is None:
self.first_engage = time.monotonic()
self.op_engaged.set()
# check moving 5 seconds after engaged, doesn't move right away
after_engaged_check = is_engaged and time.monotonic() - self.first_engage >= 5 and self.test_run
x_dist = abs(curr_pos[0] - self.vehicle_last_pos[0])
y_dist = abs(curr_pos[1] - self.vehicle_last_pos[1])
dist_threshold = 1
if x_dist >= dist_threshold or y_dist >= dist_threshold: # position not the same during staying still, > threshold is considered moving
self.distance_moved += x_dist + y_dist
time_check_threshold = 29
current_time = time.monotonic()
since_last_check = current_time - self.last_check_timestamp
if since_last_check >= time_check_threshold:
if after_engaged_check and self.distance_moved == 0:
self.status_q.put(QueueMessage(QueueMessageType.TERMINATION_INFO, {"vehicle_not_moving" : True}))
self.exit_event.set()
self.last_check_timestamp = current_time
self.distance_moved = 0
self.vehicle_last_pos = curr_pos
def read_cameras(self):
pass
def tick(self):
pass
def reset(self):
self.should_reset = True
def close(self, reason: str):
self.status_q.put(QueueMessage(QueueMessageType.CLOSE_STATUS, reason))
self.exit_event.set()
self.metadrive_process.join()