Files
dragonpilot/selfdrive/controls/lib/pathplanner.py

307 lines
13 KiB
Python

import os
import math
from common.realtime import sec_since_boot, DT_MDL
from selfdrive.swaglog import cloudlog
from selfdrive.controls.lib.lateral_mpc import libmpc_py
from selfdrive.controls.lib.drive_helpers import MPC_COST_LAT
from selfdrive.controls.lib.lane_planner import LanePlanner
from selfdrive.config import Conversions as CV
from common.params import Params
import cereal.messaging as messaging
from cereal import log
# dragonpilot
from common.params import Params
from selfdrive.dragonpilot.dragonconf import dp_get_last_modified
LaneChangeState = log.PathPlan.LaneChangeState
LaneChangeDirection = log.PathPlan.LaneChangeDirection
LOG_MPC = os.environ.get('LOG_MPC', False)
LANE_CHANGE_SPEED_MIN = 45 * CV.MPH_TO_MS
LANE_CHANGE_TIME_MAX = 10.
DESIRES = {
LaneChangeDirection.none: {
LaneChangeState.off: log.PathPlan.Desire.none,
LaneChangeState.preLaneChange: log.PathPlan.Desire.none,
LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.none,
},
LaneChangeDirection.left: {
LaneChangeState.off: log.PathPlan.Desire.none,
LaneChangeState.preLaneChange: log.PathPlan.Desire.none,
LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.laneChangeLeft,
},
LaneChangeDirection.right: {
LaneChangeState.off: log.PathPlan.Desire.none,
LaneChangeState.preLaneChange: log.PathPlan.Desire.none,
LaneChangeState.laneChangeFinishing: log.PathPlan.Desire.laneChangeRight,
},
}
def calc_states_after_delay(states, v_ego, steer_angle, curvature_factor, steer_ratio, delay):
states[0].x = v_ego * delay
states[0].psi = v_ego * curvature_factor * math.radians(steer_angle) / steer_ratio * delay
return states
class PathPlanner():
def __init__(self, CP):
self.LP = LanePlanner()
self.last_cloudlog_t = 0
self.steer_rate_cost = CP.steerRateCost
self.setup_mpc()
self.solution_invalid_cnt = 0
self.lane_change_enabled = Params().get('LaneChangeEnabled') == b'1'
self.lane_change_state = LaneChangeState.off
self.lane_change_direction = LaneChangeDirection.none
self.lane_change_timer = 0.0
self.lane_change_ll_prob = 1.0
self.prev_one_blinker = False
# dragonpilot
self.params = Params()
self.dragon_auto_lc_enabled = False
self.dragon_auto_lc_allowed = False
self.dragon_auto_lc_timer = None
self.dragon_assisted_lc_min_mph = 37 * CV.MPH_TO_MS
self.dragon_auto_lc_min_mph = 60 * CV.MPH_TO_MS
self.dragon_auto_lc_delay = 2.
self.last_ts = 0.
self.dp_last_modified = None
def setup_mpc(self):
self.libmpc = libmpc_py.libmpc
self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost)
self.mpc_solution = libmpc_py.ffi.new("log_t *")
self.cur_state = libmpc_py.ffi.new("state_t *")
self.cur_state[0].x = 0.0
self.cur_state[0].y = 0.0
self.cur_state[0].psi = 0.0
self.cur_state[0].delta = 0.0
self.angle_steers_des = 0.0
self.angle_steers_des_mpc = 0.0
self.angle_steers_des_prev = 0.0
self.angle_steers_des_time = 0.0
def update(self, sm, pm, CP, VM):
# dragonpilot
cur_time = sec_since_boot()
if cur_time - self.last_ts >= 5.:
modified = dp_get_last_modified()
if self.dp_last_modified != modified:
self.lane_change_enabled = True if self.params.get("LaneChangeEnabled", encoding='utf8') == "1" else False
if self.lane_change_enabled:
self.dragon_auto_lc_enabled = True if self.params.get("DragonEnableAutoLC", encoding='utf8') == "1" else False
# adjustable assisted lc min speed
try:
self.dragon_assisted_lc_min_mph = float(self.params.get("DragonAssistedLCMinMPH", encoding='utf8'))
except (TypeError, ValueError):
self.dragon_assisted_lc_min_mph = 37
self.dragon_assisted_lc_min_mph *= CV.MPH_TO_MS
if self.dragon_assisted_lc_min_mph < 0:
self.dragon_assisted_lc_min_mph = 0
if self.dragon_auto_lc_enabled:
# adjustable auto lc min speed
try:
self.dragon_auto_lc_min_mph = float(self.params.get("DragonAutoLCMinMPH", encoding='utf8'))
except (TypeError, ValueError):
self.dragon_auto_lc_min_mph = 60
self.dragon_auto_lc_min_mph *= CV.MPH_TO_MS
if self.dragon_auto_lc_min_mph < 0:
self.dragon_auto_lc_min_mph = 0
# when auto lc is smaller than assisted lc, we set assisted lc to the same speed as auto lc
if self.dragon_auto_lc_min_mph < self.dragon_assisted_lc_min_mph:
self.dragon_assisted_lc_min_mph = self.dragon_auto_lc_min_mph
# adjustable auto lc delay
try:
self.dragon_auto_lc_delay = float(self.params.get("DragonAutoLCDelay", encoding='utf8'))
except (TypeError, ValueError):
self.dragon_auto_lc_delay = 2.
if self.dragon_auto_lc_delay < 0:
self.dragon_auto_lc_delay = 0
else:
self.dragon_auto_lc_enabled = False
self.dp_last_modified = modified
self.last_ts = cur_time
v_ego = sm['carState'].vEgo
angle_steers = sm['carState'].steeringAngle
active = sm['controlsState'].active
angle_offset = sm['liveParameters'].angleOffset
# Run MPC
self.angle_steers_des_prev = self.angle_steers_des_mpc
VM.update_params(sm['liveParameters'].stiffnessFactor, sm['liveParameters'].steerRatio)
curvature_factor = VM.curvature_factor(v_ego)
self.LP.parse_model(sm['model'])
# Lane change logic
one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
below_lane_change_speed = v_ego < self.dragon_assisted_lc_min_mph
if sm['carState'].leftBlinker:
self.lane_change_direction = LaneChangeDirection.left
elif sm['carState'].rightBlinker:
self.lane_change_direction = LaneChangeDirection.right
if (not active) or (self.lane_change_timer > LANE_CHANGE_TIME_MAX) or (not one_blinker) or (not self.lane_change_enabled):
self.lane_change_state = LaneChangeState.off
self.lane_change_direction = LaneChangeDirection.none
else:
torque_applied = sm['carState'].steeringPressed and \
((sm['carState'].steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or \
(sm['carState'].steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))
lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
# dragonpilot auto lc
if not below_lane_change_speed and self.dragon_auto_lc_enabled and v_ego >= self.dragon_auto_lc_min_mph:
# we allow auto lc when speed reached dragon_auto_lc_min_mph
self.dragon_auto_lc_allowed = True
if self.dragon_auto_lc_timer is None:
# we only set timer when in preLaneChange state, dragon_auto_lc_delay delay
if self.lane_change_state == LaneChangeState.preLaneChange:
self.dragon_auto_lc_timer = cur_time + self.dragon_auto_lc_delay
elif cur_time >= self.dragon_auto_lc_timer:
# if timer is up, we set torque_applied to True to fake user input
torque_applied = True
else:
# if too slow, we reset all the variables
self.dragon_auto_lc_allowed = False
self.dragon_auto_lc_timer = None
# we reset the timers when torque is applied regardless
if torque_applied:
self.dragon_auto_lc_timer = None
# State transitions
# off
if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
self.lane_change_state = LaneChangeState.preLaneChange
self.lane_change_ll_prob = 1.0
# pre
elif self.lane_change_state == LaneChangeState.preLaneChange:
if not one_blinker or below_lane_change_speed:
self.lane_change_state = LaneChangeState.off
elif torque_applied:
self.lane_change_state = LaneChangeState.laneChangeStarting
# starting
elif self.lane_change_state == LaneChangeState.laneChangeStarting:
# fade out lanelines over 1s
self.lane_change_ll_prob = max(self.lane_change_ll_prob - DT_MDL, 0.0)
# 98% certainty
if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
self.lane_change_state = LaneChangeState.laneChangeFinishing
# finishing
elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
# fade in laneline over 1s
self.lane_change_ll_prob = min(self.lane_change_ll_prob + DT_MDL, 1.0)
if one_blinker and self.lane_change_ll_prob > 0.99:
self.lane_change_state = LaneChangeState.preLaneChange
elif self.lane_change_ll_prob > 0.99:
self.lane_change_state = LaneChangeState.off
# when finishing, we reset timer to none.
self.dragon_auto_lc_timer = None
if self.lane_change_state in [LaneChangeState.off, LaneChangeState.preLaneChange]:
self.lane_change_timer = 0.0
else:
self.lane_change_timer += DT_MDL
self.prev_one_blinker = one_blinker
desire = DESIRES[self.lane_change_direction][self.lane_change_state]
# Turn off lanes during lane change
if desire == log.PathPlan.Desire.laneChangeRight or desire == log.PathPlan.Desire.laneChangeLeft:
self.LP.l_prob *= self.lane_change_ll_prob
self.LP.r_prob *= self.lane_change_ll_prob
self.libmpc.init_weights(MPC_COST_LAT.PATH / 10.0, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost)
else:
self.libmpc.init_weights(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, self.steer_rate_cost)
self.LP.update_d_poly(v_ego)
# account for actuation delay
self.cur_state = calc_states_after_delay(self.cur_state, v_ego, angle_steers - angle_offset, curvature_factor, VM.sR, CP.steerActuatorDelay)
v_ego_mpc = max(v_ego, 5.0) # avoid mpc roughness due to low speed
self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
list(self.LP.l_poly), list(self.LP.r_poly), list(self.LP.d_poly),
self.LP.l_prob, self.LP.r_prob, curvature_factor, v_ego_mpc, self.LP.lane_width)
# reset to current steer angle if not active or overriding
if active:
delta_desired = self.mpc_solution[0].delta[1]
rate_desired = math.degrees(self.mpc_solution[0].rate[0] * VM.sR)
else:
delta_desired = math.radians(angle_steers - angle_offset) / VM.sR
rate_desired = 0.0
self.cur_state[0].delta = delta_desired
self.angle_steers_des_mpc = float(math.degrees(delta_desired * VM.sR) + angle_offset)
# Check for infeasable MPC solution
mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta)
t = sec_since_boot()
if mpc_nans:
self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE, MPC_COST_LAT.HEADING, CP.steerRateCost)
self.cur_state[0].delta = math.radians(angle_steers - angle_offset) / VM.sR
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Lateral mpc - nan: True")
if self.mpc_solution[0].cost > 20000. or mpc_nans: # TODO: find a better way to detect when MPC did not converge
self.solution_invalid_cnt += 1
else:
self.solution_invalid_cnt = 0
plan_solution_valid = self.solution_invalid_cnt < 2
plan_send = messaging.new_message('pathPlan')
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'liveParameters', 'model'])
plan_send.pathPlan.laneWidth = float(self.LP.lane_width)
plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly]
plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly]
plan_send.pathPlan.lProb = float(self.LP.l_prob)
plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly]
plan_send.pathPlan.rProb = float(self.LP.r_prob)
plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc)
plan_send.pathPlan.rateSteers = float(rate_desired)
plan_send.pathPlan.angleOffset = float(sm['liveParameters'].angleOffsetAverage)
plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid)
plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid)
plan_send.pathPlan.sensorValid = bool(sm['liveParameters'].sensorValid)
plan_send.pathPlan.posenetValid = bool(sm['liveParameters'].posenetValid)
plan_send.pathPlan.desire = desire
plan_send.pathPlan.laneChangeState = self.lane_change_state
plan_send.pathPlan.laneChangeDirection = self.lane_change_direction
plan_send.pathPlan.autoLCAllowed = self.dragon_auto_lc_allowed
pm.send('pathPlan', plan_send)
if LOG_MPC:
dat = messaging.new_message('liveMpc')
dat.liveMpc.x = list(self.mpc_solution[0].x)
dat.liveMpc.y = list(self.mpc_solution[0].y)
dat.liveMpc.psi = list(self.mpc_solution[0].psi)
dat.liveMpc.delta = list(self.mpc_solution[0].delta)
dat.liveMpc.cost = self.mpc_solution[0].cost
pm.send('liveMpc', dat)