Files
dragonpilot/selfdrive/mapd/mapd_helpers.py
2018-12-10 14:13:12 -08:00

224 lines
6.4 KiB
Python

import math
import numpy as np
from datetime import datetime
from selfdrive.config import Conversions as CV
from common.transformations.coordinates import LocalCoord, geodetic2ecef
LOOKAHEAD_TIME = 10.
MAPS_LOOKAHEAD_DISTANCE = 50 * LOOKAHEAD_TIME
def circle_through_points(p1, p2, p3):
"""Fits a circle through three points
Formulas from: http://www.ambrsoft.com/trigocalc/circle3d.htm"""
x1, y1, _ = p1
x2, y2, _ = p2
x3, y3, _ = p3
A = x1 * (y2 - y3) - y1 * (x2 - x3) + x2 * y3 - x3 * y2
B = (x1**2 + y1**2) * (y3 - y2) + (x2**2 + y2**2) * (y1 - y3) + (x3**2 + y3**2) * (y2 - y1)
C = (x1**2 + y1**2) * (x2 - x3) + (x2**2 + y2**2) * (x3 - x1) + (x3**2 + y3**2) * (x1 - x2)
D = (x1**2 + y1**2) * (x3 * y2 - x2 * y3) + (x2**2 + y2**2) * (x1 * y3 - x3 * y1) + (x3**2 + y3**2) * (x2 * y1 - x1 * y2)
return (-B / (2 * A), - C / (2 * A), np.sqrt((B**2 + C**2 - 4 * A * D) / (4 * A**2)))
def parse_speed_unit(max_speed):
"""Converts a maxspeed string to m/s based on the unit present in the input.
OpenStreetMap defaults to kph if no unit is present. """
conversion = CV.KPH_TO_MS
if 'mph' in max_speed:
max_speed = max_speed.replace(' mph', '')
conversion = CV.MPH_TO_MS
return float(max_speed) * conversion
class Way:
def __init__(self, way):
self.id = way.id
self.way = way
points = list()
for node in self.way.get_nodes(resolve_missing=False):
points.append((float(node.lat), float(node.lon), 0.))
self.points = np.asarray(points)
@classmethod
def closest(cls, query_results, lat, lon, heading):
results, tree, real_nodes, node_to_way = query_results
cur_pos = geodetic2ecef((lat, lon, 0))
nodes = tree.query_ball_point(cur_pos, 500)
# If no nodes within 500m, choose closest one
if not nodes:
nodes = [tree.query(cur_pos)[1]]
ways = []
for n in nodes:
real_node = real_nodes[n]
ways += node_to_way[real_node.id]
ways = set(ways)
closest_way = None
best_score = None
for way in ways:
way = Way(way)
points = way.points_in_car_frame(lat, lon, heading)
on_way = way.on_way(lat, lon, heading, points)
if not on_way:
continue
# Create mask of points in front and behind
x = points[:, 0]
y = points[:, 1]
angles = np.arctan2(y, x)
front = np.logical_and((-np.pi / 2) < angles,
angles < (np.pi / 2))
behind = np.logical_not(front)
dists = np.linalg.norm(points, axis=1)
# Get closest point behind the car
dists_behind = np.copy(dists)
dists_behind[front] = np.NaN
closest_behind = points[np.nanargmin(dists_behind)]
# Get closest point in front of the car
dists_front = np.copy(dists)
dists_front[behind] = np.NaN
closest_front = points[np.nanargmin(dists_front)]
# fit line: y = a*x + b
x1, y1, _ = closest_behind
x2, y2, _ = closest_front
a = (y2 - y1) / max((x2 - x1), 1e-5)
b = y1 - a * x1
# With a factor of 60 a 20m offset causes the same error as a 20 degree heading error
# (A 20 degree heading offset results in an a of about 1/3)
score = abs(a) * 60. + abs(b)
if closest_way is None or score < best_score:
closest_way = way
best_score = score
return closest_way
def __str__(self):
return "%s %s" % (self.id, self.way.tags)
@property
def max_speed(self):
"""Extracts the (conditional) speed limit from a way"""
if not self.way:
return None
tags = self.way.tags
max_speed = None
if 'maxspeed' in tags:
max_speed = parse_speed_unit(tags['maxspeed'])
if 'maxspeed:conditional' in tags:
max_speed_cond, cond = tags['maxspeed:conditional'].split(' @ ')
cond = cond[1:-1]
start, end = cond.split('-')
now = datetime.now() # TODO: Get time and timezone from gps fix so this will work correctly on replays
start = datetime.strptime(start, "%H:%M").replace(year=now.year, month=now.month, day=now.day)
end = datetime.strptime(end, "%H:%M").replace(year=now.year, month=now.month, day=now.day)
if start <= now <= end:
max_speed = parse_speed_unit(max_speed_cond)
return max_speed
def on_way(self, lat, lon, heading, points=None):
if points is None:
points = self.points_in_car_frame(lat, lon, heading)
x = points[:, 0]
return np.min(x) < 0. and np.max(x) > 0.
def closest_point(self, lat, lon, heading, points=None):
if points is None:
points = self.points_in_car_frame(lat, lon, heading)
i = np.argmin(np.linalg.norm(points, axis=1))
return points[i]
def distance_to_closest_node(self, lat, lon, heading, points=None):
if points is None:
points = self.points_in_car_frame(lat, lon, heading)
return np.min(np.linalg.norm(points, axis=1))
def points_in_car_frame(self, lat, lon, heading):
lc = LocalCoord.from_geodetic([lat, lon, 0.])
# Build rotation matrix
heading = math.radians(-heading + 90)
c, s = np.cos(heading), np.sin(heading)
rot = np.array([[c, s, 0.], [-s, c, 0.], [0., 0., 1.]])
# Convert to local coordinates
points_carframe = lc.geodetic2ned(self.points).T
# Rotate with heading of car
points_carframe = np.dot(rot, points_carframe[(1, 0, 2), :]).T
return points_carframe
def next_way(self, query_results, lat, lon, heading, backwards=False):
results, tree, real_nodes, node_to_way = query_results
if backwards:
node = self.way.nodes[0]
else:
node = self.way.nodes[-1]
ways = node_to_way[node.id]
way = None
try:
# Simple heuristic to find next way
ways = [w for w in ways if w.id != self.id and w.tags['highway'] == self.way.tags['highway']]
if len(ways) == 1:
way = Way(ways[0])
except KeyError:
pass
return way
def get_lookahead(self, query_results, lat, lon, heading, lookahead):
pnts = None
way = self
valid = False
for i in range(5):
# Get new points and append to list
new_pnts = way.points_in_car_frame(lat, lon, heading)
if pnts is None:
pnts = new_pnts
else:
pnts = np.vstack([pnts, new_pnts])
# Check current lookahead distance
max_dist = np.linalg.norm(pnts[-1, :])
if max_dist > lookahead:
valid = True
if max_dist > 2 * lookahead:
break
# Find next way
way = way.next_way(query_results, lat, lon, heading)
if not way:
break
return pnts, valid