Files
dragonpilot/selfdrive/controls/lib/longitudinal_planner.py
dragonpilot 1542fedcd1 dragonpilot beta3
date: 2023-08-11T23:00:23
commit: af14371afdf5023a178ed6f21a82099ea64dffe4
2023-08-11 23:00:38 +08:00

279 lines
12 KiB
Python
Executable File

#!/usr/bin/env python3
import math
import numpy as np
from common.numpy_fast import clip, interp
from common.params import Params
from cereal import log
import cereal.messaging as messaging
from common.conversions import Conversions as CV
from common.filter_simple import FirstOrderFilter
from common.realtime import DT_MDL
from selfdrive.modeld.constants import T_IDXS
from selfdrive.car.interfaces import ACCEL_MIN, ACCEL_MAX
from selfdrive.controls.lib.longcontrol import LongCtrlState
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N, get_speed_error
from system.swaglog import cloudlog
from selfdrive.controls.lib.vision_turn_controller import VisionTurnController
from selfdrive.controls.lib.speed_limit_controller import SpeedLimitController, SpeedLimitResolver
from selfdrive.controls.lib.turn_speed_controller import TurnSpeedController
from selfdrive.controls.lib.accel_controller import AccelController
from selfdrive.controls.lib.dynamic_endtoend_controller import DynamicEndtoEndController
LON_MPC_STEP = 0.2 # first step is 0.2s
A_CRUISE_MIN = -1.2
A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
# Lookup table for turns
_A_TOTAL_MAX_V = [1.7, 3.2]
_A_TOTAL_MAX_BP = [20., 40.]
def get_max_accel(v_ego):
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
"""
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
this should avoid accelerating when losing the target in turns
"""
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
# The lookup table for turns should also be updated if we do this
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
return [a_target[0], min(a_target[1], a_x_allowed)]
class LongitudinalPlanner:
def __init__(self, CP, init_v=0.0, init_a=0.0):
# mapd
self.cruise_source = 'cruise'
self.vision_turn_controller = VisionTurnController(CP)
self.speed_limit_controller = SpeedLimitController()
self.turn_speed_controller = TurnSpeedController()
self.accel_controller = AccelController()
self.dynamic_endtoend_controller = DynamicEndtoEndController()
self.CP = CP
self.mpc = LongitudinalMpc()
self.fcw = False
self.a_desired = init_a
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, DT_MDL)
self.v_model_error = 0.0
self.v_desired_trajectory = np.zeros(CONTROL_N)
self.a_desired_trajectory = np.zeros(CONTROL_N)
self.j_desired_trajectory = np.zeros(CONTROL_N)
self.solverExecutionTime = 0.0
self.params = Params()
self.param_read_counter = 0
self.read_param()
self.personality = log.LongitudinalPersonality.standard
self.dp_long_use_df_tune = False
self.dp_long_taco = self.params.get_bool('dp_long_taco')
def read_param(self):
try:
self.personality = int(self.params.get('LongitudinalPersonality'))
except (ValueError, TypeError):
self.personality = log.LongitudinalPersonality.standard
self.dp_long_use_df_tune = self.params.get_bool('dp_long_use_df_tune')
@staticmethod
def parse_model(model_msg, model_error, v_ego, taco=False):
if (len(model_msg.position.x) == 33 and
len(model_msg.velocity.x) == 33 and
len(model_msg.acceleration.x) == 33):
x = np.interp(T_IDXS_MPC, T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC
v = np.interp(T_IDXS_MPC, T_IDXS, model_msg.velocity.x) - model_error
a = np.interp(T_IDXS_MPC, T_IDXS, model_msg.acceleration.x)
j = np.zeros(len(T_IDXS_MPC))
else:
x = np.zeros(len(T_IDXS_MPC))
v = np.zeros(len(T_IDXS_MPC))
a = np.zeros(len(T_IDXS_MPC))
j = np.zeros(len(T_IDXS_MPC))
# rick - taco tune
if taco:
max_lat_accel = interp(v_ego, [5, 10, 20], [1.5, 2.0, 3.0])
curvatures = np.interp(T_IDXS_MPC, T_IDXS, model_msg.orientationRate.z) / np.clip(v, 0.3, 100.0)
max_v = np.sqrt(max_lat_accel / (np.abs(curvatures) + 1e-3)) - 2.0
v = np.minimum(max_v, v)
return x, v, a, j
def update(self, sm):
if self.param_read_counter % 50 == 0:
self.read_param()
if self.param_read_counter % 100 == 0:
self.accel_controller.set_profile(self.params.get("dp_long_accel_profile", encoding='utf-8'))
self.vision_turn_controller.set_enabled(self.params.get_bool("dp_mapd_vision_turn_control"))
self.dynamic_endtoend_controller.set_enabled(self.params.get_bool("dp_long_de2e"))
self.param_read_counter += 1
if self.dynamic_endtoend_controller.is_enabled():
self.mpc.mode = self.dynamic_endtoend_controller.get_mpc_mode(self.mpc.mode, self.CP.radarUnavailable, sm['carState'], sm['radarState'].leadOne, sm['modelV2'])
else:
self.mpc.mode = 'blended' if sm['controlsState'].experimentalMode else 'acc'
v_ego = sm['carState'].vEgo
v_cruise_kph = min(sm['controlsState'].vCruise, V_CRUISE_MAX)
v_cruise = v_cruise_kph * CV.KPH_TO_MS
long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
force_slow_decel = sm['controlsState'].forceDecel
# Reset current state when not engaged, or user is controlling the speed
reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['controlsState'].enabled
# No change cost when user is controlling the speed, or when standstill
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
if self.mpc.mode == 'acc':
accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
else:
accel_limits = [ACCEL_MIN, ACCEL_MAX]
accel_limits_turns = [ACCEL_MIN, ACCEL_MAX]
# dp - override accel using dp_long_accel_profile
if self.accel_controller.is_enabled():
# get min, max from accel controller
min_limit, max_limit = self.accel_controller.get_accel_limits(v_ego, accel_limits)
if self.mpc.mode == 'acc':
# voacc car, just give it max min (-1.2) so I can brake harder
if self.CP.radarUnavailable:
accel_limits = [A_CRUISE_MIN, max_limit]
else:
accel_limits = [min_limit, max_limit]
# recalculate limit turn according to the new min, max
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
else:
# blended, just give it max min (-3.5) and max from accel controller
accel_limits = accel_limits_turns = [ACCEL_MIN, max_limit]
if reset_state:
self.v_desired_filter.x = v_ego
# Clip aEgo to cruise limits to prevent large accelerations when becoming active
self.a_desired = clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
# Prevent divergence, smooth in current v_ego
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
# Compute model v_ego error
self.v_model_error = get_speed_error(sm['modelV2'], v_ego)
# Get acceleration and active solutions for custom long mpc.
self.cruise_source, a_min_sol, v_cruise_sol = self.cruise_solutions(not reset_state, self.v_desired_filter.x,
self.a_desired, v_cruise, sm)
if force_slow_decel:
v_cruise_sol = 0.0
# clip limits, cannot init MPC outside of bounds
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05, a_min_sol)
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
self.mpc.set_weights(prev_accel_constraint, personality=self.personality)
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error, v_ego, taco=self.dp_long_taco)
self.mpc.update(sm['radarState'], v_cruise_sol, x, v, a, j, personality=self.personality, use_df_tune=self.dp_long_use_df_tune)
self.v_desired_trajectory_full = np.interp(T_IDXS, T_IDXS_MPC, self.mpc.v_solution)
self.a_desired_trajectory_full = np.interp(T_IDXS, T_IDXS_MPC, self.mpc.a_solution)
self.v_desired_trajectory = self.v_desired_trajectory_full[:CONTROL_N]
self.a_desired_trajectory = self.a_desired_trajectory_full[:CONTROL_N]
self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
# TODO counter is only needed because radar is glitchy, remove once radar is gone
self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill
if self.fcw:
cloudlog.info("FCW triggered")
# Interpolate 0.05 seconds and save as starting point for next iteration
a_prev = self.a_desired
self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory))
self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0
def publish(self, sm, pm):
plan_send = messaging.new_message('longitudinalPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
longitudinalPlan = plan_send.longitudinalPlan
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
longitudinalPlan.longitudinalPlanSource = self.mpc.source
longitudinalPlan.fcw = self.fcw
longitudinalPlan.solverExecutionTime = self.mpc.solve_time
longitudinalPlan.personality = self.personality
pm.send('longitudinalPlan', plan_send)
# dp - extension
plan_ext_send = messaging.new_message('longitudinalPlanExt')
longitudinalPlanExt = plan_ext_send.longitudinalPlanExt
longitudinalPlanExt.visionTurnControllerState = self.vision_turn_controller.state
longitudinalPlanExt.visionTurnSpeed = float(self.vision_turn_controller.v_turn)
longitudinalPlanExt.speedLimitControlState = self.speed_limit_controller.state
longitudinalPlanExt.speedLimit = float(self.speed_limit_controller.speed_limit)
longitudinalPlanExt.speedLimitOffset = float(self.speed_limit_controller.speed_limit_offset)
longitudinalPlanExt.distToSpeedLimit = float(self.speed_limit_controller.distance)
longitudinalPlanExt.isMapSpeedLimit = bool(self.speed_limit_controller.source == SpeedLimitResolver.Source.map_data)
longitudinalPlanExt.turnSpeedControlState = self.turn_speed_controller.state
longitudinalPlanExt.turnSpeed = float(self.turn_speed_controller.speed_limit)
longitudinalPlanExt.distToTurn = float(self.turn_speed_controller.distance)
longitudinalPlanExt.turnSign = int(self.turn_speed_controller.turn_sign)
longitudinalPlanExt.dpE2EIsBlended = self.mpc.mode == 'blended'
longitudinalPlanExt.de2eIsEnabled = self.dynamic_endtoend_controller.is_enabled()
longitudinalPlanExt.longitudinalPlanExtSource = self.mpc.source if self.mpc.source != 'cruise' else self.cruise_source
pm.send('longitudinalPlanExt', plan_ext_send)
# mapd
def cruise_solutions(self, enabled, v_ego, a_ego, v_cruise, sm):
# Update controllers
self.vision_turn_controller.update(enabled, v_ego, a_ego, v_cruise, sm)
self.speed_limit_controller.update(enabled, v_ego, a_ego, v_cruise, sm['carState'].gasPressed)
self.turn_speed_controller.update(enabled, v_ego, a_ego, sm)
# Pick solution with lowest velocity target.
a_solutions = {'cruise': float("inf")}
v_solutions = {'cruise': v_cruise}
if self.vision_turn_controller.is_active:
a_solutions['turn'] = self.vision_turn_controller.a_target
v_solutions['turn'] = self.vision_turn_controller.v_turn
if self.speed_limit_controller.is_active:
a_solutions['limit'] = self.speed_limit_controller.a_target
v_solutions['limit'] = self.speed_limit_controller.speed_limit_offseted
if self.turn_speed_controller.is_active:
a_solutions['turnlimit'] = self.turn_speed_controller.a_target
v_solutions['turnlimit'] = self.turn_speed_controller.speed_limit
source = min(v_solutions, key=v_solutions.get)
return source, a_solutions[source], v_solutions[source]