Files
dragonpilot/selfdrive/controls/lib/lateral_planner.py
dragonpilot d8e5331c6e dragonpilot beta3
date: 2023-08-22T14:21:17
commit: 6148ce3d77530281f890970718e9c42b2acc5ff1
2023-08-22 14:21:31 -07:00

212 lines
8.6 KiB
Python

import numpy as np
from common.realtime import sec_since_boot, DT_MDL
from common.numpy_fast import interp
from system.swaglog import cloudlog
from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import LateralMpc
from selfdrive.controls.lib.lateral_mpc_lib.lat_mpc import N as LAT_MPC_N
from selfdrive.controls.lib.drive_helpers import CONTROL_N, MIN_SPEED, get_speed_error
from selfdrive.controls.lib.desire_helper import DesireHelper
import cereal.messaging as messaging
from cereal import log
from selfdrive.controls.lib.lane_planner import LanePlanner
from common.params import Params
from selfdrive.controls.lib.road_edge_detector import RoadEdgeDetector
TRAJECTORY_SIZE = 33
CAMERA_OFFSET = 0.04
PATH_COST = 1.0
LATERAL_MOTION_COST = 0.11
LATERAL_ACCEL_COST = 0.0
LATERAL_JERK_COST = 0.04
# Extreme steering rate is unpleasant, even
# when it does not cause bad jerk.
# TODO this cost should be lowered when low
# speed lateral control is stable on all cars
STEERING_RATE_COST = 700.0
class LateralPlanner:
def __init__(self, CP, debug=False):
self.DH = DesireHelper()
self.RED = RoadEdgeDetector()
# dp - lanefull
params = Params()
self._dp_lat_lane_priority_mode = params.get_bool("dp_lat_lane_priority_mode")
self.RED.set_enabled(params.get_bool("dp_lateral_road_edge_detection"))
self._dp_lat_lane_priority_mode_active = False
self._dp_lat_lane_priority_mode_active_prev = False
self.LP = LanePlanner()
# dp // mapd - for vision turn controller
self._d_path_w_lines_xyz = np.zeros((TRAJECTORY_SIZE, 3))
# Vehicle model parameters used to calculate lateral movement of car
self.factor1 = CP.wheelbase - CP.centerToFront
self.factor2 = (CP.centerToFront * CP.mass) / (CP.wheelbase * CP.tireStiffnessRear)
self.last_cloudlog_t = 0
self.solution_invalid_cnt = 0
self.path_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.velocity_xyz = np.zeros((TRAJECTORY_SIZE, 3))
self.plan_yaw = np.zeros((TRAJECTORY_SIZE,))
self.plan_yaw_rate = np.zeros((TRAJECTORY_SIZE,))
self.t_idxs = np.arange(TRAJECTORY_SIZE)
self.y_pts = np.zeros((TRAJECTORY_SIZE,))
self.v_plan = np.zeros((TRAJECTORY_SIZE,))
self.v_ego = 0.0
self.l_lane_change_prob = 0.0
self.r_lane_change_prob = 0.0
self.debug_mode = debug
self.lat_mpc = LateralMpc()
self.reset_mpc(np.zeros(4))
def reset_mpc(self, x0=None):
if x0 is None:
x0 = np.zeros(4)
self.x0 = x0
self.lat_mpc.reset(x0=self.x0)
def update(self, sm):
# clip speed , lateral planning is not possible at 0 speed
measured_curvature = sm['controlsState'].curvature
v_ego_car = sm['carState'].vEgo
# Parse model predictions
md = sm['modelV2']
if len(md.position.x) == TRAJECTORY_SIZE and len(md.orientation.x) == TRAJECTORY_SIZE:
self.path_xyz = np.column_stack([md.position.x, md.position.y, md.position.z])
self.t_idxs = np.array(md.position.t)
self.plan_yaw = np.array(md.orientation.z)
self.plan_yaw_rate = np.array(md.orientationRate.z)
self.velocity_xyz = np.column_stack([md.velocity.x, md.velocity.y, md.velocity.z])
car_speed = np.linalg.norm(self.velocity_xyz, axis=1) - get_speed_error(md, v_ego_car)
self.v_plan = np.clip(car_speed, MIN_SPEED, np.inf)
self.v_ego = self.v_plan[0]
# Lane change logic
desire_state = md.meta.desireState
if len(desire_state):
self.l_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeLeft]
self.r_lane_change_prob = desire_state[log.LateralPlan.Desire.laneChangeRight]
if self._dp_lat_lane_priority_mode:
self.LP.parse_model(md)
lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob
else:
lane_change_prob = self.l_lane_change_prob + self.r_lane_change_prob
edge_detected_left, edge_detected_right = self.RED.get_road_edge_detected(md.roadEdgeStds, md.laneLineProbs, sm['carState'].leftBlinker, sm['carState'].rightBlinker)
self.DH.update(sm['carState'], sm['carControl'].latActive, lane_change_prob, edge_detected_left, edge_detected_right)
path_xyz = self._get_laneless_laneline_d_path_xyz() if self._dp_lat_lane_priority_mode else self.path_xyz
self._d_path_w_lines_xyz = path_xyz
self.lat_mpc.set_weights(PATH_COST, LATERAL_MOTION_COST,
LATERAL_ACCEL_COST, LATERAL_JERK_COST,
STEERING_RATE_COST)
y_pts = path_xyz[:LAT_MPC_N+1, 1]
heading_pts = self.plan_yaw[:LAT_MPC_N+1]
yaw_rate_pts = self.plan_yaw_rate[:LAT_MPC_N+1]
self.y_pts = y_pts
assert len(y_pts) == LAT_MPC_N + 1
assert len(heading_pts) == LAT_MPC_N + 1
assert len(yaw_rate_pts) == LAT_MPC_N + 1
lateral_factor = np.clip(self.factor1 - (self.factor2 * self.v_plan**2), 0.0, np.inf)
p = np.column_stack([self.v_plan, lateral_factor])
self.lat_mpc.run(self.x0,
p,
y_pts,
heading_pts,
yaw_rate_pts)
# init state for next iteration
# mpc.u_sol is the desired second derivative of psi given x0 curv state.
# with x0[3] = measured_yaw_rate, this would be the actual desired yaw rate.
# instead, interpolate x_sol so that x0[3] is the desired yaw rate for lat_control.
self.x0[3] = interp(DT_MDL, self.t_idxs[:LAT_MPC_N + 1], self.lat_mpc.x_sol[:, 3])
# Check for infeasible MPC solution
mpc_nans = np.isnan(self.lat_mpc.x_sol[:, 3]).any()
t = sec_since_boot()
if mpc_nans or self.lat_mpc.solution_status != 0:
self.reset_mpc()
self.x0[3] = measured_curvature * self.v_ego
if t > self.last_cloudlog_t + 5.0:
self.last_cloudlog_t = t
cloudlog.warning("Lateral mpc - nan: True")
if self.lat_mpc.cost > 1e6 or mpc_nans:
self.solution_invalid_cnt += 1
else:
self.solution_invalid_cnt = 0
def publish(self, sm, pm):
plan_solution_valid = self.solution_invalid_cnt < 2
plan_send = messaging.new_message('lateralPlan')
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState', 'modelV2'])
lateralPlan = plan_send.lateralPlan
lateralPlan.modelMonoTime = sm.logMonoTime['modelV2']
lateralPlan.dPathPoints = self.y_pts.tolist()
lateralPlan.psis = self.lat_mpc.x_sol[0:CONTROL_N, 2].tolist()
lateralPlan.curvatures = (self.lat_mpc.x_sol[0:CONTROL_N, 3]/self.v_ego).tolist()
lateralPlan.curvatureRates = [float(x/self.v_ego) for x in self.lat_mpc.u_sol[0:CONTROL_N - 1]] + [0.0]
lateralPlan.mpcSolutionValid = bool(plan_solution_valid)
lateralPlan.solverExecutionTime = self.lat_mpc.solve_time
if self.debug_mode:
lateralPlan.solverCost = self.lat_mpc.cost
lateralPlan.solverState = log.LateralPlan.SolverState.new_message()
lateralPlan.solverState.x = self.lat_mpc.x_sol.tolist()
lateralPlan.solverState.u = self.lat_mpc.u_sol.flatten().tolist()
lateralPlan.desire = self.DH.desire
lateralPlan.useLaneLines = self._dp_lat_lane_priority_mode and self._dp_lat_lane_priority_mode_active
lateralPlan.laneChangeState = self.DH.lane_change_state
lateralPlan.laneChangeDirection = self.DH.lane_change_direction
pm.send('lateralPlan', plan_send)
# dp - extension
plan_ext_send = messaging.new_message('lateralPlanExt')
lateralPlanExt = plan_ext_send.lateralPlanExt
lateralPlanExt.dPathWLinesX = [float(x) for x in self._d_path_w_lines_xyz[:, 0]]
lateralPlanExt.dPathWLinesY = [float(y) for y in self._d_path_w_lines_xyz[:, 1]]
pm.send('lateralPlanExt', plan_ext_send)
def _get_laneless_laneline_d_path_xyz(self):
if self._dp_lat_lane_priority_mode and self.LP is not None:
# Turn off lanes during lane change
if self.DH.desire == log.LateralPlan.Desire.laneChangeRight or self.DH.desire == log.LateralPlan.Desire.laneChangeLeft:
self.LP.lll_prob *= self.DH.lane_change_ll_prob
self.LP.rll_prob *= self.DH.lane_change_ll_prob
# decide what mode should we use
if (self.LP.lll_prob + self.LP.rll_prob)/2 < 0.3:
self._dp_lat_lane_priority_mode_active = False
if (self.LP.lll_prob + self.LP.rll_prob)/2 > 0.5:
self._dp_lat_lane_priority_mode_active = True
# perform reset mpc
if self._dp_lat_lane_priority_mode_active != self._dp_lat_lane_priority_mode_active_prev:
self.reset_mpc()
self._dp_lat_lane_priority_mode_active_prev = self._dp_lat_lane_priority_mode_active
# use default path if not active
if not self._dp_lat_lane_priority_mode_active:
return self.path_xyz
# use lane planner path
return self.LP.get_d_path(self.v_ego, self.t_idxs, self.path_xyz)
else:
return self.path_xyz