Files
dragonpilot/common/transformations/model.py
Drew Hintz 9dae0bfac4 getting ready for Python 3 (#619)
* tabs to spaces
python 2 to 3: https://portingguide.readthedocs.io/en/latest/syntax.html#tabs-and-spaces

* use the new except syntax
python 2 to 3: https://portingguide.readthedocs.io/en/latest/exceptions.html#the-new-except-syntax

* make relative imports absolute
python 2 to 3: https://portingguide.readthedocs.io/en/latest/imports.html#absolute-imports

* Queue renamed to queue in python 3
Use the six compatibility library to support both python 2 and 3: https://portingguide.readthedocs.io/en/latest/stdlib-reorg.html#renamed-modules

* replace dict.has_key() with in
python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#removed-dict-has-key

* make dict views compatible with python 3
python 2 to 3: https://portingguide.readthedocs.io/en/latest/dicts.html#dict-views-and-iterators
Where needed, wrapping things that will be a view in python 3 with a list(). For example, if it's accessed with []
Python 3 has no iter*() methods, so just using the values() instead of itervalues() as long as it's not too performance intensive. Note that any minor performance hit of using a list instead of a view will go away when switching to python 3. If it is intensive, we could use the six version.

* Explicitly use truncating division
python 2 to 3: https://portingguide.readthedocs.io/en/latest/numbers.html#division
python 3 treats / as float division. When we want the result to be an integer, use //

* replace map() with list comprehension where a list result is needed.
In python 3, map() returns an iterator.
python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter

* replace filter() with list comprehension
In python 3, filter() returns an interatoooooooooooor.
python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-map-and-filter

* wrap zip() in list() where we need the result to be a list
python 2 to 3: https://portingguide.readthedocs.io/en/latest/iterators.html#new-behavior-of-zip

* clean out some lint
Removes these pylint warnings:
************* Module selfdrive.car.chrysler.chryslercan
W: 15, 0: Unnecessary semicolon (unnecessary-semicolon)
W: 16, 0: Unnecessary semicolon (unnecessary-semicolon)
W: 25, 0: Unnecessary semicolon (unnecessary-semicolon)
************* Module common.dbc
W:101, 0: Anomalous backslash in string: '\?'. String constant might be missing an r prefix. (anomalous-backslash-in-string)
************* Module selfdrive.car.gm.interface
R:102, 6: Redefinition of ret.minEnableSpeed type from float to int (redefined-variable-type)
R:103, 6: Redefinition of ret.mass type from int to float (redefined-variable-type)
************* Module selfdrive.updated
R: 20, 6: Redefinition of r type from int to str (redefined-variable-type)
2019-05-02 11:08:59 -07:00

142 lines
4.7 KiB
Python

import numpy as np
from common.transformations.camera import eon_focal_length, \
vp_from_ke, \
get_view_frame_from_road_frame, \
FULL_FRAME_SIZE
# segnet
SEGNET_SIZE = (512, 384)
segnet_frame_from_camera_frame = np.array([
[float(SEGNET_SIZE[0])/FULL_FRAME_SIZE[0], 0., ],
[ 0., float(SEGNET_SIZE[1])/FULL_FRAME_SIZE[1]]])
# model
MODEL_INPUT_SIZE = (320, 160)
MODEL_YUV_SIZE = (MODEL_INPUT_SIZE[0], MODEL_INPUT_SIZE[1] * 3 // 2)
MODEL_CX = MODEL_INPUT_SIZE[0]/2.
MODEL_CY = 21.
model_zoom = 1.25
model_height = 1.22
# canonical model transform
model_intrinsics = np.array(
[[ eon_focal_length / model_zoom, 0. , MODEL_CX],
[ 0. , eon_focal_length / model_zoom, MODEL_CY],
[ 0. , 0. , 1.]])
# MED model
MEDMODEL_INPUT_SIZE = (512, 256)
MEDMODEL_YUV_SIZE = (MEDMODEL_INPUT_SIZE[0], MEDMODEL_INPUT_SIZE[1] * 3 // 2)
MEDMODEL_CY = 47.6
medmodel_zoom = 1.
medmodel_intrinsics = np.array(
[[ eon_focal_length / medmodel_zoom, 0. , 0.5 * MEDMODEL_INPUT_SIZE[0]],
[ 0. , eon_focal_length / medmodel_zoom, MEDMODEL_CY],
[ 0. , 0. , 1.]])
# BIG model
BIGMODEL_INPUT_SIZE = (864, 288)
BIGMODEL_YUV_SIZE = (BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1] * 3 // 2)
bigmodel_zoom = 1.
bigmodel_intrinsics = np.array(
[[ eon_focal_length / bigmodel_zoom, 0. , 0.5 * BIGMODEL_INPUT_SIZE[0]],
[ 0. , eon_focal_length / bigmodel_zoom, 0.2 * BIGMODEL_INPUT_SIZE[1]],
[ 0. , 0. , 1.]])
bigmodel_border = np.array([
[0,0,1],
[BIGMODEL_INPUT_SIZE[0], 0, 1],
[BIGMODEL_INPUT_SIZE[0], BIGMODEL_INPUT_SIZE[1], 1],
[0, BIGMODEL_INPUT_SIZE[1], 1],
])
model_frame_from_road_frame = np.dot(model_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
bigmodel_frame_from_road_frame = np.dot(bigmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
medmodel_frame_from_road_frame = np.dot(medmodel_intrinsics,
get_view_frame_from_road_frame(0, 0, 0, model_height))
model_frame_from_bigmodel_frame = np.dot(model_intrinsics, np.linalg.inv(bigmodel_intrinsics))
# 'camera from model camera'
def get_model_height_transform(camera_frame_from_road_frame, height):
camera_frame_from_road_ground = np.dot(camera_frame_from_road_frame, np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, 0],
[0, 0, 1],
]))
camera_frame_from_road_high = np.dot(camera_frame_from_road_frame, np.array([
[1, 0, 0],
[0, 1, 0],
[0, 0, height - model_height],
[0, 0, 1],
]))
road_high_from_camera_frame = np.linalg.inv(camera_frame_from_road_high)
high_camera_from_low_camera = np.dot(camera_frame_from_road_ground, road_high_from_camera_frame)
return high_camera_from_low_camera
# camera_frame_from_model_frame aka 'warp matrix'
# was: calibration.h/CalibrationTransform
def get_camera_frame_from_model_frame(camera_frame_from_road_frame, height=model_height):
vp = vp_from_ke(camera_frame_from_road_frame)
model_camera_from_model_frame = np.array([
[model_zoom, 0., vp[0] - MODEL_CX * model_zoom],
[ 0., model_zoom, vp[1] - MODEL_CY * model_zoom],
[ 0., 0., 1.],
])
# This function is super slow, so skip it if height is very close to canonical
# TODO: speed it up!
if abs(height - model_height) > 0.001: #
camera_from_model_camera = get_model_height_transform(camera_frame_from_road_frame, height)
else:
camera_from_model_camera = np.eye(3)
return np.dot(camera_from_model_camera, model_camera_from_model_frame)
def get_camera_frame_from_bigmodel_frame(camera_frame_from_road_frame):
camera_frame_from_ground = camera_frame_from_road_frame[:, (0, 1, 3)]
bigmodel_frame_from_ground = bigmodel_frame_from_road_frame[:, (0, 1, 3)]
ground_from_bigmodel_frame = np.linalg.inv(bigmodel_frame_from_ground)
camera_frame_from_bigmodel_frame = np.dot(camera_frame_from_ground, ground_from_bigmodel_frame)
return camera_frame_from_bigmodel_frame
def get_model_frame(snu_full, camera_frame_from_model_frame, size):
idxs = camera_frame_from_model_frame.dot(np.column_stack([np.tile(np.arange(size[0]), size[1]),
np.tile(np.arange(size[1]), (size[0],1)).T.flatten(),
np.ones(size[0] * size[1])]).T).T.astype(int)
calib_flat = snu_full[idxs[:,1], idxs[:,0]]
if len(snu_full.shape) == 3:
calib = calib_flat.reshape((size[1], size[0], 3))
elif len(snu_full.shape) == 2:
calib = calib_flat.reshape((size[1], size[0]))
else:
raise ValueError("shape of input img is weird")
return calib