Files
dragonpilot/opendbc_repo/opendbc/safety/safety.h
2025-12-26 10:40:05 +08:00

579 lines
19 KiB
C

#pragma once
#include "opendbc/safety/helpers.h"
#include "opendbc/safety/lateral.h"
#include "opendbc/safety/longitudinal.h"
#include "opendbc/safety/declarations.h"
#include "opendbc/safety/can.h"
// all the safety modes
#include "opendbc/safety/modes/defaults.h"
#include "opendbc/safety/modes/honda.h"
#include "opendbc/safety/modes/toyota.h"
#include "opendbc/safety/modes/tesla.h"
#include "opendbc/safety/modes/gm.h"
#include "opendbc/safety/modes/ford.h"
#include "opendbc/safety/modes/hyundai.h"
#include "opendbc/safety/modes/chrysler.h"
#include "opendbc/safety/modes/rivian.h"
#include "opendbc/safety/modes/subaru.h"
#include "opendbc/safety/modes/subaru_preglobal.h"
#include "opendbc/safety/modes/mazda.h"
#include "opendbc/safety/modes/nissan.h"
#include "opendbc/safety/modes/volkswagen_mlb.h"
#include "opendbc/safety/modes/volkswagen_mqb.h"
#include "opendbc/safety/modes/volkswagen_pq.h"
#include "opendbc/safety/modes/elm327.h"
#include "opendbc/safety/modes/body.h"
#include "opendbc/safety/modes/psa.h"
#include "opendbc/safety/modes/hyundai_canfd.h"
uint32_t GET_BYTES(const CANPacket_t *msg, int start, int len) {
uint32_t ret = 0U;
for (int i = 0; i < len; i++) {
const uint32_t shift = i * 8;
ret |= (((uint32_t)msg->data[start + i]) << shift);
}
return ret;
}
const int MAX_WRONG_COUNTERS = 5;
// This can be set by the safety hooks
bool controls_allowed = false;
bool relay_malfunction = false;
bool gas_pressed = false;
bool gas_pressed_prev = false;
bool brake_pressed = false;
bool brake_pressed_prev = false;
bool regen_braking = false;
bool regen_braking_prev = false;
bool steering_disengage;
bool steering_disengage_prev;
bool cruise_engaged_prev = false;
struct sample_t vehicle_speed;
bool vehicle_moving = false;
bool acc_main_on = false; // referred to as "ACC off" in ISO 15622:2018
int cruise_button_prev = 0;
bool safety_rx_checks_invalid = false;
// for safety modes with torque steering control
int desired_torque_last = 0; // last desired steer torque
int rt_torque_last = 0; // last desired torque for real time check
int valid_steer_req_count = 0; // counter for steer request bit matching non-zero torque
int invalid_steer_req_count = 0; // counter to allow multiple frames of mismatching torque request bit
struct sample_t torque_meas; // last 6 motor torques produced by the eps
struct sample_t torque_driver; // last 6 driver torques measured
uint32_t ts_torque_check_last = 0;
uint32_t ts_steer_req_mismatch_last = 0; // last timestamp steer req was mismatched with torque
// state for controls_allowed timeout logic
bool heartbeat_engaged = false; // openpilot enabled, passed in heartbeat USB command
uint32_t heartbeat_engaged_mismatches = 0; // count of mismatches between heartbeat_engaged and controls_allowed
// for safety modes with angle steering control
uint32_t rt_angle_msgs = 0;
uint32_t ts_angle_check_last = 0;
int desired_angle_last = 0;
struct sample_t angle_meas; // last 6 steer angles/curvatures
int alternative_experience = 0;
// time since safety mode has been changed
uint32_t safety_mode_cnt = 0U;
uint16_t current_safety_mode = SAFETY_SILENT;
uint16_t current_safety_param = 0;
static const safety_hooks *current_hooks = &nooutput_hooks;
safety_config current_safety_config;
static void generic_rx_checks(void);
static void stock_ecu_check(bool stock_ecu_detected);
static bool is_msg_valid(RxCheck addr_list[], int index) {
bool valid = true;
if (index != -1) {
if (!addr_list[index].status.valid_checksum || !addr_list[index].status.valid_quality_flag || (addr_list[index].status.wrong_counters >= MAX_WRONG_COUNTERS)) {
valid = false;
controls_allowed = false;
}
}
return valid;
}
static int get_addr_check_index(const CANPacket_t *msg, RxCheck addr_list[], const int len) {
int addr = msg->addr;
int length = GET_LEN(msg);
int index = -1;
for (int i = 0; i < len; i++) {
// if multiple msgs are allowed, determine which one is present on the bus
if (!addr_list[i].status.msg_seen) {
for (uint8_t j = 0U; (j < MAX_ADDR_CHECK_MSGS) && (addr_list[i].msg[j].addr != 0); j++) {
if ((addr == addr_list[i].msg[j].addr) && (msg->bus == addr_list[i].msg[j].bus) &&
(length == addr_list[i].msg[j].len)) {
addr_list[i].status.index = j;
addr_list[i].status.msg_seen = true;
break;
}
}
}
if (addr_list[i].status.msg_seen) {
int idx = addr_list[i].status.index;
if ((addr == addr_list[i].msg[idx].addr) && (msg->bus == addr_list[i].msg[idx].bus) &&
(length == addr_list[i].msg[idx].len)) {
index = i;
break;
}
}
}
return index;
}
static void update_addr_timestamp(RxCheck addr_list[], int index) {
if (index != -1) {
uint32_t ts = microsecond_timer_get();
addr_list[index].status.last_timestamp = ts;
}
}
static void update_counter(RxCheck addr_list[], int index, uint8_t counter) {
if (index != -1) {
uint8_t expected_counter = (addr_list[index].status.last_counter + 1U) % (addr_list[index].msg[addr_list[index].status.index].max_counter + 1U);
addr_list[index].status.wrong_counters += (expected_counter == counter) ? -1 : 1;
addr_list[index].status.wrong_counters = SAFETY_CLAMP(addr_list[index].status.wrong_counters, 0, MAX_WRONG_COUNTERS);
addr_list[index].status.last_counter = counter;
}
}
static bool rx_msg_safety_check(const CANPacket_t *msg,
const safety_config *cfg,
const safety_hooks *safety_hooks) {
int index = get_addr_check_index(msg, cfg->rx_checks, cfg->rx_checks_len);
update_addr_timestamp(cfg->rx_checks, index);
if (index != -1) {
// checksum check
if ((safety_hooks->get_checksum != NULL) && (safety_hooks->compute_checksum != NULL) && !cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].ignore_checksum) {
uint32_t checksum = safety_hooks->get_checksum(msg);
uint32_t checksum_comp = safety_hooks->compute_checksum(msg);
cfg->rx_checks[index].status.valid_checksum = checksum_comp == checksum;
} else {
cfg->rx_checks[index].status.valid_checksum = cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].ignore_checksum;
}
// counter check
if ((safety_hooks->get_counter != NULL) && (cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].max_counter > 0U)) {
uint8_t counter = safety_hooks->get_counter(msg);
update_counter(cfg->rx_checks, index, counter);
} else {
cfg->rx_checks[index].status.wrong_counters = cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].ignore_counter ? 0 : MAX_WRONG_COUNTERS;
}
// quality flag check
if ((safety_hooks->get_quality_flag_valid != NULL) && !cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].ignore_quality_flag) {
cfg->rx_checks[index].status.valid_quality_flag = safety_hooks->get_quality_flag_valid(msg);
} else {
cfg->rx_checks[index].status.valid_quality_flag = cfg->rx_checks[index].msg[cfg->rx_checks[index].status.index].ignore_quality_flag;
}
}
return is_msg_valid(cfg->rx_checks, index);
}
bool safety_rx_hook(const CANPacket_t *msg) {
bool controls_allowed_prev = controls_allowed;
bool valid = rx_msg_safety_check(msg, &current_safety_config, current_hooks);
bool whitelisted = get_addr_check_index(msg, current_safety_config.rx_checks, current_safety_config.rx_checks_len) != -1;
if (valid && whitelisted) {
current_hooks->rx(msg);
}
// dp - rx_ext hook for ALL valid messages (including non-whitelisted)
if (valid && (current_hooks->rx_ext != NULL)) {
current_hooks->rx_ext(msg);
}
// Handles gas, brake, and regen paddle
generic_rx_checks();
// the relay malfunction hook runs on all incoming rx messages.
// check all applicable tx msgs for liveness on sending bus.
// used to detect a relay malfunction or control messages from disabled ECUs like the radar
const int addr = msg->addr;
for (int i = 0; i < current_safety_config.tx_msgs_len; i++) {
const CanMsg *m = &current_safety_config.tx_msgs[i];
if (m->check_relay) {
stock_ecu_check((m->addr == addr) && (m->bus == msg->bus));
}
}
// dp - also check tx_ext messages for relay malfunction
// GCOV_EXCL_START
if (current_hooks->tx_ext != NULL) {
TxExtResult result = current_hooks->tx_ext(msg);
if (result.check_relay) {
stock_ecu_check(result.allowed); // allowed means addr/bus/len matched
}
}
// GCOV_EXCL_STOP
// reset mismatches on rising edge of controls_allowed to avoid rare race condition
if (controls_allowed && !controls_allowed_prev) {
heartbeat_engaged_mismatches = 0;
}
return valid;
}
static bool tx_msg_safety_check(const CANPacket_t *msg, const CanMsg msg_list[], int len) {
int addr = msg->addr;
int length = GET_LEN(msg);
bool whitelisted = false;
for (int i = 0; i < len; i++) {
if ((addr == msg_list[i].addr) && (msg->bus == msg_list[i].bus) && (length == msg_list[i].len)) {
whitelisted = true;
break;
}
}
return whitelisted;
}
bool safety_tx_hook(CANPacket_t *msg) {
bool whitelisted = tx_msg_safety_check(msg, current_safety_config.tx_msgs, current_safety_config.tx_msgs_len);
if ((current_safety_mode == SAFETY_ALLOUTPUT) || (current_safety_mode == SAFETY_ELM327)) {
whitelisted = true;
}
// dp - tx_ext hook for messages NOT in base whitelist
// GCOV_EXCL_START
bool tx_ext_allowed = false;
if (!whitelisted && (current_hooks->tx_ext != NULL)) {
TxExtResult result = current_hooks->tx_ext(msg);
tx_ext_allowed = result.allowed;
}
// GCOV_EXCL_STOP
bool safety_allowed = false;
if (whitelisted || tx_ext_allowed) {
safety_allowed = current_hooks->tx(msg);
}
return !relay_malfunction && (whitelisted || tx_ext_allowed) && safety_allowed;
}
static int get_fwd_bus(int bus_num) {
int destination_bus;
if (bus_num == 0) {
destination_bus = 2;
} else if (bus_num == 2) {
destination_bus = 0;
} else {
destination_bus = -1;
}
return destination_bus;
}
int safety_fwd_hook(int bus_num, int addr) {
bool blocked = relay_malfunction || current_safety_config.disable_forwarding;
// Block messages that are being checked for relay malfunctions. Safety modes can opt out of this
// in the case of selective AEB forwarding
const int destination_bus = get_fwd_bus(bus_num);
if (!blocked) {
for (int i = 0; i < current_safety_config.tx_msgs_len; i++) {
const CanMsg *m = &current_safety_config.tx_msgs[i];
if (m->check_relay && !m->disable_static_blocking && (m->addr == addr) && (m->bus == (unsigned int)destination_bus)) {
blocked = true;
break;
}
}
}
// dp - also block tx_ext messages with check_relay from being forwarded
// GCOV_EXCL_START
if (!blocked && (current_hooks->tx_ext != NULL)) {
// Create a fake packet to check tx_ext (we only have addr, need to check all possible lengths)
// For forwarding, we check if ANY matching addr on destination_bus should be blocked
CANPacket_t fake_msg = {0};
fake_msg.addr = addr;
fake_msg.bus = destination_bus;
// Check common message lengths (4, 5, 6, 7, 8 bytes)
for (int len = 4; len <= 8; len++) {
fake_msg.data_len_code = len; // approximate DLC
TxExtResult result = current_hooks->tx_ext(&fake_msg);
if (result.allowed && result.check_relay) {
blocked = true;
break;
}
}
}
// GCOV_EXCL_STOP
if (!blocked && (current_hooks->fwd != NULL)) {
blocked = current_hooks->fwd(bus_num, addr);
}
return blocked ? -1 : destination_bus;
}
// Given a CRC-8 poly, generate a static lookup table to use with a fast CRC-8
// algorithm. Called at init time for safety modes using CRC-8.
void gen_crc_lookup_table_8(uint8_t poly, uint8_t crc_lut[]) {
for (uint16_t i = 0U; i <= 0xFFU; i++) {
uint8_t crc = (uint8_t)i;
for (int j = 0; j < 8; j++) {
if ((crc & 0x80U) != 0U) {
crc = (uint8_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
void gen_crc_lookup_table_16(uint16_t poly, uint16_t crc_lut[]) {
for (uint16_t i = 0; i < 256U; i++) {
uint16_t crc = i << 8U;
for (uint16_t j = 0; j < 8U; j++) {
if ((crc & 0x8000U) != 0U) {
crc = (uint16_t)((crc << 1) ^ poly);
} else {
crc <<= 1;
}
}
crc_lut[i] = crc;
}
}
// 1Hz safety function called by main. Now just a check for lagging safety messages
void safety_tick(const safety_config *cfg) {
const uint8_t MAX_MISSED_MSGS = 10U;
bool rx_checks_invalid = false;
uint32_t ts = microsecond_timer_get();
if (cfg != NULL) {
for (int i=0; i < cfg->rx_checks_len; i++) {
uint32_t elapsed_time = safety_get_ts_elapsed(ts, cfg->rx_checks[i].status.last_timestamp);
// lag threshold is max of: 1s and MAX_MISSED_MSGS * expected timestep.
// Quite conservative to not risk false triggers.
// 2s of lag is worse case, since the function is called at 1Hz
uint32_t timestep = 1e6 / cfg->rx_checks[i].msg[cfg->rx_checks[i].status.index].frequency;
bool lagging = elapsed_time > SAFETY_MAX(timestep * MAX_MISSED_MSGS, 1e6);
cfg->rx_checks[i].status.lagging = lagging;
if (lagging) {
controls_allowed = false;
}
if (lagging || !is_msg_valid(cfg->rx_checks, i)) {
rx_checks_invalid = true;
}
}
}
safety_rx_checks_invalid = rx_checks_invalid;
}
static void relay_malfunction_set(void) {
relay_malfunction = true;
}
static void generic_rx_checks(void) {
gas_pressed_prev = gas_pressed;
// exit controls on rising edge of brake press
if (brake_pressed && (!brake_pressed_prev || vehicle_moving)) {
controls_allowed = false;
}
brake_pressed_prev = brake_pressed;
// exit controls on rising edge of regen paddle
if (regen_braking && (!regen_braking_prev || vehicle_moving)) {
controls_allowed = false;
}
regen_braking_prev = regen_braking;
// exit controls on rising edge of steering override/disengage
if (steering_disengage && !steering_disengage_prev) {
controls_allowed = false;
}
steering_disengage_prev = steering_disengage;
}
static void stock_ecu_check(bool stock_ecu_detected) {
// allow 1s of transition timeout after relay changes state before assessing malfunctioning
const uint32_t RELAY_TRNS_TIMEOUT = 1U;
// check if stock ECU is on bus broken by car harness
if ((safety_mode_cnt > RELAY_TRNS_TIMEOUT) && stock_ecu_detected) {
relay_malfunction_set();
}
}
static void relay_malfunction_reset(void) {
relay_malfunction = false;
}
// resets values and min/max for sample_t struct
static void reset_sample(struct sample_t *sample) {
for (int i = 0; i < MAX_SAMPLE_VALS; i++) {
sample->values[i] = 0;
}
update_sample(sample, 0);
}
int set_safety_hooks(uint16_t mode, uint16_t param) {
const safety_hook_config safety_hook_registry[] = {
{SAFETY_SILENT, &nooutput_hooks},
{SAFETY_HONDA_NIDEC, &honda_nidec_hooks},
{SAFETY_TOYOTA, &toyota_hooks},
{SAFETY_ELM327, &elm327_hooks},
{SAFETY_GM, &gm_hooks},
{SAFETY_HONDA_BOSCH, &honda_bosch_hooks},
{SAFETY_HYUNDAI, &hyundai_hooks},
{SAFETY_CHRYSLER, &chrysler_hooks},
{SAFETY_SUBARU, &subaru_hooks},
{SAFETY_VOLKSWAGEN_MQB, &volkswagen_mqb_hooks},
{SAFETY_NISSAN, &nissan_hooks},
{SAFETY_NOOUTPUT, &nooutput_hooks},
{SAFETY_HYUNDAI_LEGACY, &hyundai_legacy_hooks},
{SAFETY_MAZDA, &mazda_hooks},
{SAFETY_BODY, &body_hooks},
{SAFETY_FORD, &ford_hooks},
{SAFETY_RIVIAN, &rivian_hooks},
{SAFETY_TESLA, &tesla_hooks},
{SAFETY_HYUNDAI_CANFD, &hyundai_canfd_hooks},
#ifdef ALLOW_DEBUG
{SAFETY_PSA, &psa_hooks},
{SAFETY_SUBARU_PREGLOBAL, &subaru_preglobal_hooks},
{SAFETY_VOLKSWAGEN_MLB, &volkswagen_mlb_hooks},
{SAFETY_VOLKSWAGEN_PQ, &volkswagen_pq_hooks},
{SAFETY_ALLOUTPUT, &alloutput_hooks},
#endif
};
// reset state set by safety mode
safety_mode_cnt = 0U;
relay_malfunction = false;
gas_pressed = false;
gas_pressed_prev = false;
brake_pressed = false;
brake_pressed_prev = false;
regen_braking = false;
regen_braking_prev = false;
steering_disengage = false;
steering_disengage_prev = false;
cruise_engaged_prev = false;
vehicle_moving = false;
acc_main_on = false;
cruise_button_prev = 0;
desired_torque_last = 0;
rt_torque_last = 0;
rt_angle_msgs = 0;
ts_angle_check_last = 0;
desired_angle_last = 0;
ts_torque_check_last = 0;
ts_steer_req_mismatch_last = 0;
valid_steer_req_count = 0;
invalid_steer_req_count = 0;
// reset samples
reset_sample(&vehicle_speed);
reset_sample(&torque_meas);
reset_sample(&torque_driver);
reset_sample(&angle_meas);
controls_allowed = false;
relay_malfunction_reset();
safety_rx_checks_invalid = false;
current_safety_config.rx_checks = NULL;
current_safety_config.rx_checks_len = 0;
current_safety_config.tx_msgs = NULL;
current_safety_config.tx_msgs_len = 0;
current_safety_config.disable_forwarding = false;
int set_status = -1; // not set
int hook_config_count = sizeof(safety_hook_registry) / sizeof(safety_hook_config);
for (int i = 0; i < hook_config_count; i++) {
if (safety_hook_registry[i].id == mode) {
current_hooks = safety_hook_registry[i].hooks;
current_safety_mode = mode;
current_safety_param = param;
set_status = 0; // set
}
}
if ((set_status == 0) && (current_hooks->init != NULL)) {
safety_config cfg = current_hooks->init(param);
current_safety_config.rx_checks = cfg.rx_checks;
current_safety_config.rx_checks_len = cfg.rx_checks_len;
current_safety_config.tx_msgs = cfg.tx_msgs;
current_safety_config.tx_msgs_len = cfg.tx_msgs_len;
current_safety_config.disable_forwarding = cfg.disable_forwarding;
// reset all dynamic fields in addr struct
for (int j = 0; j < current_safety_config.rx_checks_len; j++) {
current_safety_config.rx_checks[j].status = (RxStatus){0};
}
}
return set_status;
}
// convert a trimmed integer to signed 32 bit int
int to_signed(int d, int bits) {
int d_signed = d;
int max_value = (1 << SAFETY_MAX((bits - 1), 0));
if (d >= max_value) {
d_signed = d - (1 << SAFETY_MAX(bits, 0));
}
return d_signed;
}
// given a new sample, update the sample_t struct
void update_sample(struct sample_t *sample, int sample_new) {
for (int i = MAX_SAMPLE_VALS - 1; i > 0; i--) {
sample->values[i] = sample->values[i-1];
}
sample->values[0] = sample_new;
// get the minimum and maximum measured samples
sample->min = sample->values[0];
sample->max = sample->values[0];
for (int i = 1; i < MAX_SAMPLE_VALS; i++) {
if (sample->values[i] < sample->min) {
sample->min = sample->values[i];
}
if (sample->values[i] > sample->max) {
sample->max = sample->values[i];
}
}
}
int ROUND(float val) {
return val + ((val > 0.0) ? 0.5 : -0.5);
}
void pcm_cruise_check(bool cruise_engaged) {
// Enter controls on rising edge of stock ACC, exit controls if stock ACC disengages
if (!cruise_engaged) {
controls_allowed = false;
}
if (cruise_engaged && !cruise_engaged_prev) {
controls_allowed = true;
}
cruise_engaged_prev = cruise_engaged;
}
void speed_mismatch_check(const float speed_2) {
// Disable controls if speeds from two sources are too far apart.
// For safety modes that use speed to adjust torque or angle limits
const float MAX_SPEED_DELTA = 2.0; // m/s
bool is_invalid_speed = SAFETY_ABS(speed_2 - ((float)vehicle_speed.values[0] / VEHICLE_SPEED_FACTOR)) > MAX_SPEED_DELTA;
if (is_invalid_speed) {
controls_allowed = false;
}
}