Files
dragonpilot/board/drivers/uart.h
Vehicle Researcher 38faf7f8a4 Squashed 'panda/' changes from 9881e6118..30c7ca8a5
30c7ca8a5 bump version to 1.5.3
9403dbebe Need to fix wifi test before re-enabling.
0812362b5 GPS UART fix until boardd is refactored (#294)
ffbdb87a8 python2 -> 3 fixes to pedal flasher (#292)
78b75ef59 Added build type to release version strings
736c2cbf7 Fixed sending of bytes over PandaSerial
0894b28f1 Fixed USB power mode on black (#291)
4b3358c92 patch to be able to switch from EON to PC with a Panda that has EON b… (#290)
a95c44a71 Made setting of NOOUTPUT on no heartbeat more efficient (#287)
948683688 UART instability fix with high interrupt load (#283)
9a9e9d47b Fix usb_power_mode missing initialization (#289)
af0960ad3 DFU fix (#288)
70219d7bb match safety enum in cereal (#285)
a338d3932 Fix build for jenkins test
78ef4a6eb Stop charge (#284)
5266a4028 Fix typo (#286)
f4787ec5a Revert "turn on CDP when ignition switches on (#281)"
d37daee97 Revert "NONE and CLIENT should be the same thing in white/grey pandas"
e97b283e7 NONE and CLIENT should be the same thing in white/grey pandas
8c1df559f turn on CDP when ignition switches on (#281)
847a35d42 Fix bullet points
fac027716 Misra update (#280)
5a04df6b1 Added description of regression tests to README
c4aabae59 Fixed some python3 bugs in the test scripts and PandaSerial
9af0cb353 Bump version
c4ac3d63b Disable GPS load switching on black pandas
078ee588c This is the correct table, actually
578b95ee3 Misra table of coverage added
d383a2625 bump panda
b98ca010d fix sdk build in python3 env (#279)
63d3dc7d3 Set python3 env before runnign get_sdk, so we know if it fails
e951d79c0 legacy code we don't control can remain python2
11b715118 Merge pull request #276 from commaai/python3
9893a842a Merge pull request #277 from zorrobyte/patch-1
d3268690c Revert "revert back esptool to python2 and force to build esptools with python2"
875e76012 revert back esptool to python2 and force to build esptools with python2
9c40e6240 needed to install python3
ed2ac87cf Also moved safety tests to python3
6842b2d2c move esptool sdk installation before python3 env is set. Kind of a cheat
b5a2cabcd this hopefully fixes build test
628050955 Fixes safety replay
2c220b623 this fixes language regr test
fdbe789b8 use python 3 in Docker container
ee1ae4f86 Better hash print
0de9ef73c Revert "Final 2to3 on the whole repo"
c92fd3bc9 Final 2to3 on the whole repo
5f2bc4460 better
b2a30fdbd make works!
b74005d10 fix sign.py
fe727706b read file as byte and no tab before sleep
32a344ef6 Update README.md
2dc34096a 2to3 applied
ffa68ef71 undo unnecessary brackets for print
dbc248027 Fix all the prints with 2to3, some need to be undo
5a7aeba0f xrange is gone
982c4c928 one more python3 env
1e2412a29 env python -> env python3

git-subtree-dir: panda
git-subtree-split: 30c7ca8a53a3adb05d23d7cfe64fb716a656ef1a
2019-10-09 18:31:56 +00:00

434 lines
12 KiB
C

// IRQs: USART1, USART2, USART3, UART5
// ***************************** Definitions *****************************
#define FIFO_SIZE_INT 0x400U
#define FIFO_SIZE_DMA 0x1000U
typedef struct uart_ring {
volatile uint16_t w_ptr_tx;
volatile uint16_t r_ptr_tx;
uint8_t *elems_tx;
uint32_t tx_fifo_size;
volatile uint16_t w_ptr_rx;
volatile uint16_t r_ptr_rx;
uint8_t *elems_rx;
uint32_t rx_fifo_size;
USART_TypeDef *uart;
void (*callback)(struct uart_ring*);
bool dma_rx;
} uart_ring;
#define UART_BUFFER(x, size_rx, size_tx, uart_ptr, callback_ptr, rx_dma) \
uint8_t elems_rx_##x[size_rx]; \
uint8_t elems_tx_##x[size_tx]; \
uart_ring uart_ring_##x = { \
.w_ptr_tx = 0, \
.r_ptr_tx = 0, \
.elems_tx = ((uint8_t *)&elems_tx_##x), \
.tx_fifo_size = size_tx, \
.w_ptr_rx = 0, \
.r_ptr_rx = 0, \
.elems_rx = ((uint8_t *)&elems_rx_##x), \
.rx_fifo_size = size_rx, \
.uart = uart_ptr, \
.callback = callback_ptr, \
.dma_rx = rx_dma \
};
// ***************************** Function prototypes *****************************
void uart_init(uart_ring *q, int baud);
bool getc(uart_ring *q, char *elem);
bool putc(uart_ring *q, char elem);
void puts(const char *a);
void puth(unsigned int i);
void hexdump(const void *a, int l);
void debug_ring_callback(uart_ring *ring);
// ******************************** UART buffers ********************************
// esp_gps = USART1
UART_BUFFER(esp_gps, FIFO_SIZE_DMA, FIFO_SIZE_INT, USART1, NULL, true)
// lin1, K-LINE = UART5
// lin2, L-LINE = USART3
UART_BUFFER(lin1, FIFO_SIZE_INT, FIFO_SIZE_INT, UART5, NULL, false)
UART_BUFFER(lin2, FIFO_SIZE_INT, FIFO_SIZE_INT, USART3, NULL, false)
// debug = USART2
UART_BUFFER(debug, FIFO_SIZE_INT, FIFO_SIZE_INT, USART2, debug_ring_callback, false)
uart_ring *get_ring_by_number(int a) {
uart_ring *ring = NULL;
switch(a) {
case 0:
ring = &uart_ring_debug;
break;
case 1:
ring = &uart_ring_esp_gps;
break;
case 2:
ring = &uart_ring_lin1;
break;
case 3:
ring = &uart_ring_lin2;
break;
default:
ring = NULL;
break;
}
return ring;
}
// ***************************** Interrupt handlers *****************************
void uart_tx_ring(uart_ring *q){
ENTER_CRITICAL();
// Send out next byte of TX buffer
if (q->w_ptr_tx != q->r_ptr_tx) {
// Only send if transmit register is empty (aka last byte has been sent)
if ((q->uart->SR & USART_SR_TXE) != 0) {
q->uart->DR = q->elems_tx[q->r_ptr_tx]; // This clears TXE
q->r_ptr_tx = (q->r_ptr_tx + 1U) % q->tx_fifo_size;
}
// Enable TXE interrupt if there is still data to be sent
if(q->r_ptr_tx != q->w_ptr_tx){
q->uart->CR1 |= USART_CR1_TXEIE;
} else {
q->uart->CR1 &= ~USART_CR1_TXEIE;
}
}
EXIT_CRITICAL();
}
void uart_rx_ring(uart_ring *q){
// Do not read out directly if DMA enabled
if (q->dma_rx == false) {
ENTER_CRITICAL();
// Read out RX buffer
uint8_t c = q->uart->DR; // This read after reading SR clears a bunch of interrupts
uint16_t next_w_ptr = (q->w_ptr_rx + 1U) % q->rx_fifo_size;
// Do not overwrite buffer data
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = c;
q->w_ptr_rx = next_w_ptr;
if (q->callback != NULL) {
q->callback(q);
}
}
EXIT_CRITICAL();
}
}
// This function should be called on:
// * Half-transfer DMA interrupt
// * Full-transfer DMA interrupt
// * UART IDLE detection
uint32_t prev_w_index = 0;
void dma_pointer_handler(uart_ring *q, uint32_t dma_ndtr) {
ENTER_CRITICAL();
uint32_t w_index = (q->rx_fifo_size - dma_ndtr);
// Check for new data
if (w_index != prev_w_index){
// Check for overflow
if (
((prev_w_index < q->r_ptr_rx) && (q->r_ptr_rx <= w_index)) || // No rollover
((w_index < prev_w_index) && ((q->r_ptr_rx <= w_index) || (prev_w_index < q->r_ptr_rx))) // Rollover
){
// We lost data. Set the new read pointer to the oldest byte still available
q->r_ptr_rx = (w_index + 1U) % q->rx_fifo_size;
}
// Set write pointer
q->w_ptr_rx = w_index;
}
prev_w_index = w_index;
EXIT_CRITICAL();
}
// This read after reading SR clears all error interrupts. We don't want compiler warnings, nor optimizations
#define UART_READ_DR(uart) volatile uint8_t t = (uart)->DR; UNUSED(t);
void uart_interrupt_handler(uart_ring *q) {
ENTER_CRITICAL();
// Read UART status. This is also the first step necessary in clearing most interrupts
uint32_t status = q->uart->SR;
// If RXNE is set, perform a read. This clears RXNE, ORE, IDLE, NF and FE
if((status & USART_SR_RXNE) != 0U){
uart_rx_ring(q);
}
// Detect errors and clear them
uint32_t err = (status & USART_SR_ORE) | (status & USART_SR_NE) | (status & USART_SR_FE) | (status & USART_SR_PE);
if(err != 0U){
#ifdef DEBUG_UART
puts("Encountered UART error: "); puth(err); puts("\n");
#endif
UART_READ_DR(q->uart)
}
// Send if necessary
uart_tx_ring(q);
// Run DMA pointer handler if the line is idle
if(q->dma_rx && (status & USART_SR_IDLE)){
// Reset IDLE flag
UART_READ_DR(q->uart)
if(q == &uart_ring_esp_gps){
dma_pointer_handler(&uart_ring_esp_gps, DMA2_Stream5->NDTR);
} else {
#ifdef DEBUG_UART
puts("No IDLE dma_pointer_handler implemented for this UART.");
#endif
}
}
EXIT_CRITICAL();
}
void USART1_IRQHandler(void) { uart_interrupt_handler(&uart_ring_esp_gps); }
void USART2_IRQHandler(void) { uart_interrupt_handler(&uart_ring_debug); }
void USART3_IRQHandler(void) { uart_interrupt_handler(&uart_ring_lin2); }
void UART5_IRQHandler(void) { uart_interrupt_handler(&uart_ring_lin1); }
void DMA2_Stream5_IRQHandler(void) {
ENTER_CRITICAL();
// Handle errors
if((DMA2->HISR & DMA_HISR_TEIF5) || (DMA2->HISR & DMA_HISR_DMEIF5) || (DMA2->HISR & DMA_HISR_FEIF5)){
#ifdef DEBUG_UART
puts("Encountered UART DMA error. Clearing and restarting DMA...\n");
#endif
// Clear flags
DMA2->HIFCR = DMA_HIFCR_CTEIF5 | DMA_HIFCR_CDMEIF5 | DMA_HIFCR_CFEIF5;
// Re-enable the DMA if necessary
DMA2_Stream5->CR |= DMA_SxCR_EN;
}
// Re-calculate write pointer and reset flags
dma_pointer_handler(&uart_ring_esp_gps, DMA2_Stream5->NDTR);
DMA2->HIFCR = DMA_HIFCR_CTCIF5 | DMA_HIFCR_CHTIF5;
EXIT_CRITICAL();
}
// ***************************** Hardware setup *****************************
void dma_rx_init(uart_ring *q) {
// Initialization is UART-dependent
if(q == &uart_ring_esp_gps){
// DMA2, stream 5, channel 4
// Disable FIFO mode (enable direct)
DMA2_Stream5->FCR &= ~DMA_SxFCR_DMDIS;
// Setup addresses
DMA2_Stream5->PAR = (uint32_t)&(USART1->DR); // Source
DMA2_Stream5->M0AR = (uint32_t)q->elems_rx; // Destination
DMA2_Stream5->NDTR = q->rx_fifo_size; // Number of bytes to copy
// Circular, Increment memory, byte size, periph -> memory, enable
// Transfer complete, half transfer, transfer error and direct mode error interrupt enable
DMA2_Stream5->CR = DMA_SxCR_CHSEL_2 | DMA_SxCR_MINC | DMA_SxCR_CIRC | DMA_SxCR_HTIE | DMA_SxCR_TCIE | DMA_SxCR_TEIE | DMA_SxCR_DMEIE | DMA_SxCR_EN;
// Enable DMA receiver in UART
q->uart->CR3 |= USART_CR3_DMAR;
// Enable UART IDLE interrupt
q->uart->CR1 |= USART_CR1_IDLEIE;
// Enable interrupt
NVIC_EnableIRQ(DMA2_Stream5_IRQn);
} else {
puts("Tried to initialize RX DMA for an unsupported UART\n");
}
}
#define __DIV(_PCLK_, _BAUD_) (((_PCLK_) * 25U) / (4U * (_BAUD_)))
#define __DIVMANT(_PCLK_, _BAUD_) (__DIV((_PCLK_), (_BAUD_)) / 100U)
#define __DIVFRAQ(_PCLK_, _BAUD_) ((((__DIV((_PCLK_), (_BAUD_)) - (__DIVMANT((_PCLK_), (_BAUD_)) * 100U)) * 16U) + 50U) / 100U)
#define __USART_BRR(_PCLK_, _BAUD_) ((__DIVMANT((_PCLK_), (_BAUD_)) << 4) | (__DIVFRAQ((_PCLK_), (_BAUD_)) & 0x0FU))
void uart_set_baud(USART_TypeDef *u, unsigned int baud) {
if (u == USART1) {
// USART1 is on APB2
u->BRR = __USART_BRR(48000000U, baud);
} else {
u->BRR = __USART_BRR(24000000U, baud);
}
}
void uart_init(uart_ring *q, int baud) {
// Set baud and enable peripheral with TX and RX mode
uart_set_baud(q->uart, baud);
q->uart->CR1 = USART_CR1_UE | USART_CR1_TE | USART_CR1_RE;
// Enable UART interrupts
if(q->uart == USART1){
NVIC_EnableIRQ(USART1_IRQn);
} else if (q->uart == USART2){
NVIC_EnableIRQ(USART2_IRQn);
} else if (q->uart == USART3){
NVIC_EnableIRQ(USART3_IRQn);
} else if (q->uart == UART5){
NVIC_EnableIRQ(UART5_IRQn);
} else {
// UART not used. Skip enabling interrupts
}
// Initialise RX DMA if used
if(q->dma_rx){
dma_rx_init(q);
}
}
// ************************* Low-level buffer functions *************************
bool getc(uart_ring *q, char *elem) {
bool ret = false;
ENTER_CRITICAL();
if (q->w_ptr_rx != q->r_ptr_rx) {
if (elem != NULL) *elem = q->elems_rx[q->r_ptr_rx];
q->r_ptr_rx = (q->r_ptr_rx + 1U) % q->rx_fifo_size;
ret = true;
}
EXIT_CRITICAL();
return ret;
}
bool injectc(uart_ring *q, char elem) {
int ret = false;
uint16_t next_w_ptr;
ENTER_CRITICAL();
next_w_ptr = (q->w_ptr_rx + 1U) % q->tx_fifo_size;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = elem;
q->w_ptr_rx = next_w_ptr;
ret = true;
}
EXIT_CRITICAL();
return ret;
}
bool putc(uart_ring *q, char elem) {
bool ret = false;
uint16_t next_w_ptr;
ENTER_CRITICAL();
next_w_ptr = (q->w_ptr_tx + 1U) % q->tx_fifo_size;
if (next_w_ptr != q->r_ptr_tx) {
q->elems_tx[q->w_ptr_tx] = elem;
q->w_ptr_tx = next_w_ptr;
ret = true;
}
EXIT_CRITICAL();
uart_tx_ring(q);
return ret;
}
// Seems dangerous to use (might lock CPU if called with interrupts disabled f.e.)
// TODO: Remove? Not used anyways
void uart_flush(uart_ring *q) {
while (q->w_ptr_tx != q->r_ptr_tx) {
__WFI();
}
}
void uart_flush_sync(uart_ring *q) {
// empty the TX buffer
while (q->w_ptr_tx != q->r_ptr_tx) {
uart_tx_ring(q);
}
}
void uart_send_break(uart_ring *u) {
while ((u->uart->CR1 & USART_CR1_SBK) != 0);
u->uart->CR1 |= USART_CR1_SBK;
}
void clear_uart_buff(uart_ring *q) {
ENTER_CRITICAL();
q->w_ptr_tx = 0;
q->r_ptr_tx = 0;
q->w_ptr_rx = 0;
q->r_ptr_rx = 0;
EXIT_CRITICAL();
}
// ************************ High-level debug functions **********************
void putch(const char a) {
if (has_external_debug_serial) {
// assuming debugging is important if there's external serial connected
while (!putc(&uart_ring_debug, a));
} else {
// misra-c2012-17.7: serial debug function, ok to ignore output
(void)injectc(&uart_ring_debug, a);
}
}
void puts(const char *a) {
for (const char *in = a; *in; in++) {
if (*in == '\n') putch('\r');
putch(*in);
}
}
void putui(uint32_t i) {
uint32_t i_copy = i;
char str[11];
uint8_t idx = 10;
str[idx] = '\0';
idx--;
do {
str[idx] = (i_copy % 10U) + 0x30U;
idx--;
i_copy /= 10;
} while (i_copy != 0U);
puts(&str[idx + 1U]);
}
void puth(unsigned int i) {
char c[] = "0123456789abcdef";
for (int pos = 28; pos != -4; pos -= 4) {
putch(c[(i >> (unsigned int)(pos)) & 0xFU]);
}
}
void puth2(unsigned int i) {
char c[] = "0123456789abcdef";
for (int pos = 4; pos != -4; pos -= 4) {
putch(c[(i >> (unsigned int)(pos)) & 0xFU]);
}
}
void hexdump(const void *a, int l) {
if (a != NULL) {
for (int i=0; i < l; i++) {
if ((i != 0) && ((i & 0xf) == 0)) puts("\n");
puth2(((const unsigned char*)a)[i]);
puts(" ");
}
}
puts("\n");
}