Files
dragonpilot/board/drivers/uart.h
Vehicle Researcher e6e6ad2e1f Squashed 'panda/' changes from 3125232..2253dd3
2253dd3 fix volt ign detect
3b299d7 add ignition and refactor
af9af6d Merge pull request #110 from Jamezz/volt
13e850e more correct
f295063 add new define to tests
fec9758 gate that with debug
5516ebf one more ifdef
cac7b31 only panda has float
938d474 fpu enable
ffbf0c7 cleaner
de30f27 Revert "need f to not be double"
4142acf need f to not be double
3eb15c8 refactor to share code
a4c8b64 change to O2 to fix make recover
711fd11 Enable compiler optimizations, fix things it breaks
2e6f774 block IPAS in main toyota safety mode
e7a2b3a add ipas tests
894572c fix tests
367c9ad add safety toyota ipas
95919b9 Bounty: panda high quality CAN autobaud (#96)
6557cd2 Toyota Safety: allow controls only on rising edge of cruise_engaged
02c1ddf Revert "added steer override check when IPAS is in control (#106)"
9f925ba Fix the merge mess
23d3833 Merge from comma upstream
a0cc51a Undo safety mode override
ea1c1dc make wlan interface name generic
6dbd8c9 Implement WebUSB and upgrade WinUSB to 2.0 (#107)
4fc83a5 Add safety hook for ignition and have GM use gear selector to determine ignition
52b2ac0 switch from travis to circleci
48e2374 build panda esp image
065572a circleci build stm image
7a1f319 add panda python package test and fix safety test
021dde7 move saftey test helper files into safety folder
ce0545f add ci files
6a3307c no LIN over ELM
7d21acb added steer override check when IPAS is in control (#106)
1c88caf Safety code testing (#104)
f4efd1f Merge pull request #101 from adhintz/master
c02618b Merge pull request #102 from quillford/master
1ba5f8a added link to wiki for user scripts
de2b19e add support for multiple buses to can_unique and can_bittransition output data in sorted order.

git-subtree-dir: panda
git-subtree-split: 2253dd3c48e21abb82fe161d6f58237490111206
2018-04-14 06:06:42 +00:00

305 lines
7.5 KiB
C

// IRQs: USART1, USART2, USART3, UART5
// ***************************** serial port queues *****************************
// esp = USART1
uart_ring esp_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART1,
.callback = NULL};
// lin1, K-LINE = UART5
// lin2, L-LINE = USART3
uart_ring lin1_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = UART5,
.callback = NULL};
uart_ring lin2_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART3,
.callback = NULL};
// debug = USART2
void debug_ring_callback(uart_ring *ring);
uart_ring debug_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART2,
.callback = debug_ring_callback};
uart_ring *get_ring_by_number(int a) {
switch(a) {
case 0:
return &debug_ring;
case 1:
return &esp_ring;
case 2:
return &lin1_ring;
case 3:
return &lin2_ring;
default:
return NULL;
}
}
// ***************************** serial port *****************************
void uart_ring_process(uart_ring *q) {
enter_critical_section();
// TODO: check if external serial is connected
int sr = q->uart->SR;
if (q->w_ptr_tx != q->r_ptr_tx) {
if (sr & USART_SR_TXE) {
q->uart->DR = q->elems_tx[q->r_ptr_tx];
q->r_ptr_tx = (q->r_ptr_tx + 1) % FIFO_SIZE;
} else {
// push on interrupt later
q->uart->CR1 |= USART_CR1_TXEIE;
}
} else {
// nothing to send
q->uart->CR1 &= ~USART_CR1_TXEIE;
}
if (sr & USART_SR_RXNE || sr & USART_SR_ORE) {
uint8_t c = q->uart->DR; // TODO: can drop packets
if (q != &esp_ring) {
uint16_t next_w_ptr = (q->w_ptr_rx + 1) % FIFO_SIZE;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = c;
q->w_ptr_rx = next_w_ptr;
if (q->callback) q->callback(q);
}
}
}
if (sr & USART_SR_ORE) {
// set dropped packet flag?
}
exit_critical_section();
}
// interrupt boilerplate
void USART1_IRQHandler(void) { uart_ring_process(&esp_ring); }
void USART2_IRQHandler(void) { uart_ring_process(&debug_ring); }
void USART3_IRQHandler(void) { uart_ring_process(&lin2_ring); }
void UART5_IRQHandler(void) { uart_ring_process(&lin1_ring); }
int getc(uart_ring *q, char *elem) {
int ret = 0;
enter_critical_section();
if (q->w_ptr_rx != q->r_ptr_rx) {
*elem = q->elems_rx[q->r_ptr_rx];
q->r_ptr_rx = (q->r_ptr_rx + 1) % FIFO_SIZE;
ret = 1;
}
exit_critical_section();
return ret;
}
int injectc(uart_ring *q, char elem) {
int ret = 0;
uint16_t next_w_ptr;
enter_critical_section();
next_w_ptr = (q->w_ptr_rx + 1) % FIFO_SIZE;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = elem;
q->w_ptr_rx = next_w_ptr;
ret = 1;
}
exit_critical_section();
return ret;
}
int putc(uart_ring *q, char elem) {
int ret = 0;
uint16_t next_w_ptr;
enter_critical_section();
next_w_ptr = (q->w_ptr_tx + 1) % FIFO_SIZE;
if (next_w_ptr != q->r_ptr_tx) {
q->elems_tx[q->w_ptr_tx] = elem;
q->w_ptr_tx = next_w_ptr;
ret = 1;
}
exit_critical_section();
uart_ring_process(q);
return ret;
}
void clear_uart_buff(uart_ring *q) {
enter_critical_section();
q->w_ptr_tx = 0;
q->r_ptr_tx = 0;
q->w_ptr_rx = 0;
q->r_ptr_rx = 0;
exit_critical_section();
}
// ***************************** start UART code *****************************
#define __DIV(_PCLK_, _BAUD_) (((_PCLK_)*25)/(4*(_BAUD_)))
#define __DIVMANT(_PCLK_, _BAUD_) (__DIV((_PCLK_), (_BAUD_))/100)
#define __DIVFRAQ(_PCLK_, _BAUD_) (((__DIV((_PCLK_), (_BAUD_)) - (__DIVMANT((_PCLK_), (_BAUD_)) * 100)) * 16 + 50) / 100)
#define __USART_BRR(_PCLK_, _BAUD_) ((__DIVMANT((_PCLK_), (_BAUD_)) << 4)|(__DIVFRAQ((_PCLK_), (_BAUD_)) & 0x0F))
void uart_set_baud(USART_TypeDef *u, int baud) {
if (u == USART1) {
// USART1 is on APB2
u->BRR = __USART_BRR(48000000, baud);
} else {
u->BRR = __USART_BRR(24000000, baud);
}
}
#define USART1_DMA_LEN 0x20
char usart1_dma[USART1_DMA_LEN];
void uart_dma_drain() {
uart_ring *q = &esp_ring;
enter_critical_section();
if (DMA2->HISR & DMA_HISR_TCIF5 || DMA2->HISR & DMA_HISR_HTIF5 || DMA2_Stream5->NDTR != USART1_DMA_LEN) {
// disable DMA
q->uart->CR3 &= ~USART_CR3_DMAR;
DMA2_Stream5->CR &= ~DMA_SxCR_EN;
while (DMA2_Stream5->CR & DMA_SxCR_EN);
int i;
for (i = 0; i < USART1_DMA_LEN - DMA2_Stream5->NDTR; i++) {
char c = usart1_dma[i];
uint16_t next_w_ptr = (q->w_ptr_rx + 1) % FIFO_SIZE;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = c;
q->w_ptr_rx = next_w_ptr;
}
}
// reset DMA len
DMA2_Stream5->NDTR = USART1_DMA_LEN;
// clear interrupts
DMA2->HIFCR = DMA_HIFCR_CTCIF5 | DMA_HIFCR_CHTIF5;
//DMA2->HIFCR = DMA_HIFCR_CTEIF5 | DMA_HIFCR_CDMEIF5 | DMA_HIFCR_CFEIF5;
// enable DMA
DMA2_Stream5->CR |= DMA_SxCR_EN;
q->uart->CR3 |= USART_CR3_DMAR;
}
exit_critical_section();
}
void DMA2_Stream5_IRQHandler(void) {
//set_led(LED_BLUE, 1);
uart_dma_drain();
//set_led(LED_BLUE, 0);
}
void uart_init(USART_TypeDef *u, int baud) {
// enable uart and tx+rx mode
u->CR1 = USART_CR1_UE;
uart_set_baud(u, baud);
u->CR1 |= USART_CR1_TE | USART_CR1_RE;
//u->CR2 = USART_CR2_STOP_0 | USART_CR2_STOP_1;
//u->CR2 = USART_CR2_STOP_0;
// ** UART is ready to work **
// enable interrupts
if (u != USART1) {
u->CR1 |= USART_CR1_RXNEIE;
}
if (u == USART1) {
// DMA2, stream 2, channel 3
DMA2_Stream5->M0AR = (uint32_t)usart1_dma;
DMA2_Stream5->NDTR = USART1_DMA_LEN;
DMA2_Stream5->PAR = (uint32_t)&(USART1->DR);
// channel4, increment memory, periph -> memory, enable
DMA2_Stream5->CR = DMA_SxCR_CHSEL_2 | DMA_SxCR_MINC | DMA_SxCR_HTIE | DMA_SxCR_TCIE | DMA_SxCR_EN;
// this one uses DMA receiver
u->CR3 = USART_CR3_DMAR;
NVIC_EnableIRQ(DMA2_Stream5_IRQn);
NVIC_EnableIRQ(USART1_IRQn);
} else if (u == USART2) {
NVIC_EnableIRQ(USART2_IRQn);
} else if (u == USART3) {
NVIC_EnableIRQ(USART3_IRQn);
} else if (u == UART5) {
NVIC_EnableIRQ(UART5_IRQn);
}
}
void putch(const char a) {
if (has_external_debug_serial) {
/*while ((debug_ring.uart->SR & USART_SR_TXE) == 0);
debug_ring.uart->DR = a;*/
// assuming debugging is important if there's external serial connected
while (!putc(&debug_ring, a));
//putc(&debug_ring, a);
} else {
injectc(&debug_ring, a);
}
}
int puts(const char *a) {
for (;*a;a++) {
if (*a == '\n') putch('\r');
putch(*a);
}
return 0;
}
void putui(uint32_t i) {
char str[11];
uint8_t idx = 10;
str[idx--] = '\0';
do {
str[idx--] = (i % 10) + 0x30;
i /= 10;
} while (i);
puts(str + idx + 1);
}
void puth(unsigned int i) {
int pos;
char c[] = "0123456789abcdef";
for (pos = 28; pos != -4; pos -= 4) {
putch(c[(i >> pos) & 0xF]);
}
}
void puth2(unsigned int i) {
int pos;
char c[] = "0123456789abcdef";
for (pos = 4; pos != -4; pos -= 4) {
putch(c[(i >> pos) & 0xF]);
}
}
void hexdump(const void *a, int l) {
int i;
for (i=0;i<l;i++) {
if (i != 0 && (i&0xf) == 0) puts("\n");
puth2(((const unsigned char*)a)[i]);
puts(" ");
}
puts("\n");
}