mirror of
https://github.com/dragonpilot/dragonpilot.git
synced 2026-02-19 19:23:58 +08:00
version: dragonpilot v0.9.2 beta for EON/C2 date: 2023-03-29T09:55:29 dp-dev(priv2) master commit: 7a10a5f475f257bfcaf0f300d0441aef80be52d8
410 lines
16 KiB
Python
Executable File
410 lines
16 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
import math
|
|
import numpy as np
|
|
from common.numpy_fast import clip, interp
|
|
|
|
import cereal.messaging as messaging
|
|
from common.conversions import Conversions as CV
|
|
from common.filter_simple import FirstOrderFilter
|
|
from common.params import Params
|
|
from common.realtime import DT_MDL
|
|
from selfdrive.modeld.constants import T_IDXS
|
|
from selfdrive.controls.lib.longcontrol import LongCtrlState
|
|
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import LongitudinalMpc, MIN_ACCEL, MAX_ACCEL, T_FOLLOW
|
|
from selfdrive.controls.lib.longitudinal_mpc_lib.long_mpc import T_IDXS as T_IDXS_MPC
|
|
from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX, CONTROL_N
|
|
from system.swaglog import cloudlog
|
|
from selfdrive.controls.lib.vision_turn_controller import VisionTurnController
|
|
from selfdrive.controls.lib.speed_limit_controller import SpeedLimitController, SpeedLimitResolver
|
|
from selfdrive.controls.lib.turn_speed_controller import TurnSpeedController
|
|
from selfdrive.controls.lib.events import Events
|
|
|
|
LON_MPC_STEP = 0.2 # first step is 0.2s
|
|
A_CRUISE_MIN = -1.2
|
|
A_CRUISE_MAX_VALS = [1.6, 1.2, 0.8, 0.6]
|
|
A_CRUISE_MAX_BP = [0., 10.0, 25., 40.]
|
|
|
|
# Lookup table for turns
|
|
_A_TOTAL_MAX_V = [1.7, 3.2]
|
|
_A_TOTAL_MAX_BP = [20., 40.]
|
|
|
|
#DP_FOLLOWING_DIST = {
|
|
# 0: 1.0,
|
|
# 1: 1.2,
|
|
# 2: 1.4,
|
|
# 3: 1.8,
|
|
#}
|
|
|
|
DP_ACCEL_ECO = 0
|
|
DP_ACCEL_NORMAL = 1
|
|
DP_ACCEL_SPORT = 2
|
|
|
|
# accel profile by @arne182 modified by cgw
|
|
_DP_CRUISE_MIN_V = [-0.6, -0.6, -0.7, -0.8, -0.8, -0.5]
|
|
_DP_CRUISE_MIN_V_ECO = [-0.5, -0.5, -0.6, -0.7, -0.7, -0.45]
|
|
_DP_CRUISE_MIN_V_SPORT = [-0.7, -0.7, -0.8, -0.9, -0.9, -0.6]
|
|
_DP_CRUISE_MIN_BP = [0., 8.3, 14, 20., 30., 55.]
|
|
|
|
_DP_CRUISE_MAX_V = [3.5, 3.4, 2.1, 1.6, 1.1, 0.91, 0.69, 0.44, 0.34, 0.13]
|
|
_DP_CRUISE_MAX_V_ECO = [3.0, 1.8, 1.3, 1.0, 0.71, 0.59, 0.45, 0.36, 0.28, 0.09]
|
|
_DP_CRUISE_MAX_V_SPORT = [3.5, 3.5, 3.4, 3.0, 2.1, 1.7, 1.3, 0.9, 0.7, 0.5]
|
|
_DP_CRUISE_MAX_BP = [0., 3, 6., 8., 11., 15., 20., 25., 30., 55.]
|
|
|
|
# d-e2e, from modeldata.h
|
|
TRAJECTORY_SIZE = 33
|
|
|
|
_DP_E2E_LEAD_COUNT = 5
|
|
|
|
_DP_E2E_STOP_BP = [0., 10., 20., 30., 40., 50., 55.]
|
|
_DP_E2E_STOP_DIST = [10, 30., 50., 70., 80., 90., 120.]
|
|
_DP_E2E_STOP_COUNT = 5
|
|
|
|
_DP_E2E_SNG_COUNT = 5
|
|
_DP_E2E_SNG_ACC_COUNT = 5
|
|
_DP_E2E_SWAP_COUNT = 10
|
|
|
|
_DP_E2E_TF_COUNT = 5
|
|
|
|
def dp_calc_cruise_accel_limits(v_ego, dp_profile):
|
|
if dp_profile == DP_ACCEL_ECO:
|
|
a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V_ECO)
|
|
a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V_ECO)
|
|
elif dp_profile == DP_ACCEL_SPORT:
|
|
a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V_SPORT)
|
|
a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V_SPORT)
|
|
else:
|
|
a_cruise_min = interp(v_ego, _DP_CRUISE_MIN_BP, _DP_CRUISE_MIN_V)
|
|
a_cruise_max = interp(v_ego, _DP_CRUISE_MAX_BP, _DP_CRUISE_MAX_V)
|
|
return a_cruise_min, a_cruise_max
|
|
|
|
def get_max_accel(v_ego):
|
|
return interp(v_ego, A_CRUISE_MAX_BP, A_CRUISE_MAX_VALS)
|
|
|
|
|
|
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
|
|
"""
|
|
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
|
|
this should avoid accelerating when losing the target in turns
|
|
"""
|
|
|
|
# FIXME: This function to calculate lateral accel is incorrect and should use the VehicleModel
|
|
# The lookup table for turns should also be updated if we do this
|
|
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
|
|
a_y = v_ego ** 2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
|
|
a_x_allowed = math.sqrt(max(a_total_max ** 2 - a_y ** 2, 0.))
|
|
|
|
return [a_target[0], min(a_target[1], a_x_allowed)]
|
|
|
|
|
|
class LongitudinalPlanner:
|
|
def __init__(self, CP, init_v=0.0, init_a=0.0):
|
|
# dp
|
|
self.dp_accel_profile_ctrl = False
|
|
self.dp_accel_profile = DP_ACCEL_ECO
|
|
self.dp_following_profile_ctrl = False
|
|
self.dp_following_profile = 0
|
|
self.cruise_source = 'cruise'
|
|
self.vision_turn_controller = VisionTurnController(CP)
|
|
self.speed_limit_controller = SpeedLimitController()
|
|
self.events = Events()
|
|
self.turn_speed_controller = TurnSpeedController()
|
|
self.dp_e2e_adapt_ap = False
|
|
self.dp_e2e_adapt_fp = False
|
|
|
|
# conditional e2e
|
|
self.dp_e2e_has_lead = False
|
|
self.dp_e2e_lead_last = False
|
|
self.dp_e2e_lead_count = 0
|
|
self.dp_e2e_sng = False
|
|
self.dp_e2e_sng_count = 0
|
|
self.dp_e2e_standstill_last = False
|
|
self.dp_e2e_swap_count = 0
|
|
self.dp_e2e_stop_count = 0
|
|
self.dp_e2e_tf = T_FOLLOW
|
|
self.dp_e2e_tf_count = 0
|
|
|
|
self.CP = CP
|
|
self.mpc = LongitudinalMpc()
|
|
self.fcw = False
|
|
|
|
self.a_desired = init_a
|
|
self.v_desired_filter = FirstOrderFilter(init_v, 2.0, DT_MDL)
|
|
self.v_model_error = 0.0
|
|
|
|
self.v_desired_trajectory = np.zeros(CONTROL_N)
|
|
self.a_desired_trajectory = np.zeros(CONTROL_N)
|
|
self.j_desired_trajectory = np.zeros(CONTROL_N)
|
|
self.solverExecutionTime = 0.0
|
|
|
|
def _set_dp_e2e_mode(self, mode, force=False):
|
|
reset_state = False
|
|
|
|
if force:
|
|
self.dp_e2e_swap_count = 0
|
|
if self.mpc.mode != mode:
|
|
reset_state = True
|
|
self.mpc.mode = mode
|
|
return reset_state
|
|
|
|
# prevent switching in a short period of time.
|
|
if self.mpc.mode == mode:
|
|
self.dp_e2e_swap_count = 0
|
|
else:
|
|
self.dp_e2e_swap_count += 1
|
|
|
|
if self.dp_e2e_swap_count >= _DP_E2E_SWAP_COUNT:
|
|
self.mpc.mode = mode
|
|
reset_state = True
|
|
|
|
return reset_state
|
|
|
|
def conditional_e2e(self, sm):
|
|
v_ego_kph = sm['carState'].vEgo * 3.6
|
|
standstill = sm['carState'].standstill
|
|
|
|
# lead detection with buffer
|
|
lead = sm['radarState'].leadOne
|
|
lead_dist = lead.dRel
|
|
|
|
# make sure it see lead enough time
|
|
if lead.status != self.dp_e2e_lead_last:
|
|
self.dp_e2e_lead_count = 0
|
|
else:
|
|
self.dp_e2e_lead_count += 1
|
|
if self.dp_e2e_lead_count >= _DP_E2E_LEAD_COUNT:
|
|
self.dp_e2e_has_lead = lead.status
|
|
self.dp_e2e_lead_last = lead.status
|
|
|
|
# when standstill, always e2e
|
|
if standstill:
|
|
self.dp_e2e_sng_count = 0
|
|
self.dp_e2e_sng = False
|
|
return self._set_dp_e2e_mode('blended')
|
|
|
|
if self.dp_e2e_standstill_last and not standstill:
|
|
self.dp_e2e_sng = True
|
|
|
|
# when sng, we e2e for 0.5 secs
|
|
if self.dp_e2e_sng:
|
|
self.dp_e2e_sng_count += 1
|
|
if self.dp_e2e_sng_count > _DP_E2E_SNG_COUNT:
|
|
if self.dp_e2e_sng_count > _DP_E2E_SNG_ACC_COUNT:
|
|
self.dp_e2e_sng = False
|
|
return self._set_dp_e2e_mode('acc', True)
|
|
return self._set_dp_e2e_mode('blended')
|
|
|
|
# when we see a lead
|
|
if sm['dragonConf'].dpE2EConditionalVoacc and self.dp_e2e_has_lead:
|
|
# drive above conditional speed and lead is too close
|
|
if lead_dist <= v_ego_kph * self.dp_e2e_tf * interp(v_ego_kph, [50., 60., 80.], [1.30, 1.20, 1.10]) / 3.6:
|
|
self.dp_e2e_tf_count += 1
|
|
else:
|
|
self.dp_e2e_tf_count = 0
|
|
if self.dp_e2e_tf_count > _DP_E2E_TF_COUNT:
|
|
return self._set_dp_e2e_mode('blended', True)
|
|
|
|
# stop sign detection
|
|
md = sm['modelV2']
|
|
if abs(sm['carState'].steeringAngleDeg) <= 60 and len(md.orientation.x) == len(md.position.x) == TRAJECTORY_SIZE:
|
|
if md.position.x[TRAJECTORY_SIZE - 1] < interp(v_ego_kph, _DP_E2E_STOP_BP, _DP_E2E_STOP_DIST):
|
|
self.dp_e2e_stop_count += 1
|
|
else:
|
|
self.dp_e2e_stop_count = 0
|
|
else:
|
|
self.dp_e2e_stop_count = 0
|
|
|
|
if self.dp_e2e_stop_count >= _DP_E2E_STOP_COUNT:
|
|
return self._set_dp_e2e_mode('blended', True)
|
|
|
|
return self._set_dp_e2e_mode('acc')
|
|
|
|
@staticmethod
|
|
def parse_model(model_msg, model_error):
|
|
if (len(model_msg.position.x) == 33 and
|
|
len(model_msg.velocity.x) == 33 and
|
|
len(model_msg.acceleration.x) == 33):
|
|
x = np.interp(T_IDXS_MPC, T_IDXS, model_msg.position.x) - model_error * T_IDXS_MPC
|
|
v = np.interp(T_IDXS_MPC, T_IDXS, model_msg.velocity.x) - model_error
|
|
a = np.interp(T_IDXS_MPC, T_IDXS, model_msg.acceleration.x)
|
|
j = np.zeros(len(T_IDXS_MPC))
|
|
else:
|
|
x = np.zeros(len(T_IDXS_MPC))
|
|
v = np.zeros(len(T_IDXS_MPC))
|
|
a = np.zeros(len(T_IDXS_MPC))
|
|
j = np.zeros(len(T_IDXS_MPC))
|
|
return x, v, a, j
|
|
|
|
def get_df(self, v_ego):
|
|
desired_tf = T_FOLLOW
|
|
if not self.dp_e2e_adapt_fp and self.mpc.mode == 'blended':
|
|
return desired_tf
|
|
if self.dp_following_profile_ctrl:
|
|
if self.dp_following_profile == 0:
|
|
x_vel = [1.1, 3.3, 5.5, 13.89, 19.7, 25.0, 41.67]
|
|
y_dist = [1.0, 1.2, 1.3, 1.34, 1.34, 1.23, 1.34]
|
|
desired_tf = np.interp(v_ego, x_vel, y_dist)
|
|
elif self.dp_following_profile == 1:
|
|
x_vel = [5.556, 19.7, 41.67]
|
|
y_dist = [1.4, 1.6, 1.6 ]
|
|
desired_tf = np.interp(v_ego, x_vel, y_dist)
|
|
elif self.dp_following_profile == 2:
|
|
x_vel = [0, 19.7, 41.67]
|
|
y_dist = [1.4, 2.0, 2.0]
|
|
desired_tf = np.interp(v_ego, x_vel, y_dist)
|
|
return desired_tf
|
|
|
|
def update(self, sm):
|
|
# dp
|
|
self.dp_accel_profile_ctrl = sm['dragonConf'].dpAccelProfileCtrl
|
|
self.dp_accel_profile = sm['dragonConf'].dpAccelProfile
|
|
self.dp_following_profile_ctrl = sm['dragonConf'].dpFollowingProfileCtrl
|
|
self.dp_following_profile = sm['dragonConf'].dpFollowingProfile
|
|
dp_reset_state = False
|
|
|
|
if sm['dragonConf'].dpE2EConditional:
|
|
self.dp_e2e_adapt_ap = sm['dragonConf'].dpE2EConditionalAdaptAp
|
|
self.dp_e2e_adapt_fp = sm['dragonConf'].dpE2EConditionalAdaptFp
|
|
dp_reset_state = self.conditional_e2e(sm)
|
|
else:
|
|
self.mpc.mode = 'blended' if sm['controlsState'].experimentalMode else 'acc'
|
|
|
|
v_ego = sm['carState'].vEgo
|
|
v_cruise_kph = sm['controlsState'].vCruise
|
|
v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX)
|
|
v_cruise = v_cruise_kph * CV.KPH_TO_MS
|
|
|
|
long_control_off = sm['controlsState'].longControlState == LongCtrlState.off
|
|
force_slow_decel = sm['controlsState'].forceDecel
|
|
|
|
# Reset current state when not engaged, or user is controlling the speed
|
|
reset_state = long_control_off if self.CP.openpilotLongitudinalControl else not sm['controlsState'].enabled
|
|
|
|
# No change cost when user is controlling the speed, or when standstill
|
|
prev_accel_constraint = not (reset_state or sm['carState'].standstill)
|
|
|
|
if self.mpc.mode == 'acc':
|
|
if self.dp_accel_profile_ctrl:
|
|
accel_limits = dp_calc_cruise_accel_limits(v_ego, self.dp_accel_profile)
|
|
else:
|
|
accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)]
|
|
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP)
|
|
else:
|
|
if sm['dragonConf'].dpE2EConditional and sm['dragonConf'].dpE2EConditionalAdaptAp and self.dp_accel_profile_ctrl:
|
|
_, accel_max = dp_calc_cruise_accel_limits(v_ego, self.dp_accel_profile)
|
|
accel_limits = [MIN_ACCEL, accel_max]
|
|
else:
|
|
accel_limits = [MIN_ACCEL, MAX_ACCEL]
|
|
accel_limits_turns = [MIN_ACCEL, MAX_ACCEL]
|
|
|
|
if reset_state or dp_reset_state:
|
|
self.v_desired_filter.x = v_ego
|
|
# Clip aEgo to cruise limits to prevent large accelerations when becoming active
|
|
self.a_desired = clip(sm['carState'].aEgo, accel_limits[0], accel_limits[1])
|
|
|
|
# Prevent divergence, smooth in current v_ego
|
|
self.v_desired_filter.x = max(0.0, self.v_desired_filter.update(v_ego))
|
|
# Compute model v_ego error
|
|
if len(sm['modelV2'].temporalPose.trans):
|
|
self.v_model_error = sm['modelV2'].temporalPose.trans[0] - v_ego
|
|
|
|
# Get acceleration and active solutions for custom long mpc.
|
|
self.cruise_source, a_min_sol, v_cruise_sol = self.cruise_solutions(not reset_state, self.v_desired_filter.x,
|
|
self.a_desired, v_cruise, sm)
|
|
|
|
if force_slow_decel:
|
|
v_cruise_sol = 0.0
|
|
# clip limits, cannot init MPC outside of bounds
|
|
accel_limits_turns[0] = min(accel_limits_turns[0], self.a_desired + 0.05, a_min_sol)
|
|
accel_limits_turns[1] = max(accel_limits_turns[1], self.a_desired - 0.05)
|
|
|
|
# dp - mpc.set_weights calls moved to mpc.update function because we need lead0 and lead1 data
|
|
# self.mpc.set_weights(prev_accel_constraint)
|
|
self.mpc.set_accel_limits(accel_limits_turns[0], accel_limits_turns[1])
|
|
self.mpc.set_cur_state(self.v_desired_filter.x, self.a_desired)
|
|
x, v, a, j = self.parse_model(sm['modelV2'], self.v_model_error)
|
|
self.dp_e2e_tf = self.get_df(v_ego)
|
|
self.mpc.update(sm['radarState'], v_cruise_sol, x, v, a, j, prev_accel_constraint, self.dp_e2e_tf)
|
|
|
|
self.v_desired_trajectory_full = np.interp(T_IDXS, T_IDXS_MPC, self.mpc.v_solution)
|
|
self.a_desired_trajectory_full = np.interp(T_IDXS, T_IDXS_MPC, self.mpc.a_solution)
|
|
self.v_desired_trajectory = self.v_desired_trajectory_full[:CONTROL_N]
|
|
self.a_desired_trajectory = self.a_desired_trajectory_full[:CONTROL_N]
|
|
self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution)
|
|
|
|
# TODO counter is only needed because radar is glitchy, remove once radar is gone
|
|
self.fcw = self.mpc.crash_cnt > 2 and not sm['carState'].standstill
|
|
if self.fcw:
|
|
cloudlog.info("FCW triggered")
|
|
if sm['dragonConf'].dpE2EConditional:
|
|
self._set_dp_e2e_mode('blended', True)
|
|
|
|
# Interpolate 0.05 seconds and save as starting point for next iteration
|
|
a_prev = self.a_desired
|
|
self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory))
|
|
self.v_desired_filter.x = self.v_desired_filter.x + DT_MDL * (self.a_desired + a_prev) / 2.0
|
|
|
|
def publish(self, sm, pm):
|
|
plan_send = messaging.new_message('longitudinalPlan')
|
|
|
|
plan_send.valid = sm.all_checks(service_list=['carState', 'controlsState'])
|
|
|
|
longitudinalPlan = plan_send.longitudinalPlan
|
|
longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2']
|
|
longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2']
|
|
|
|
longitudinalPlan.speeds = self.v_desired_trajectory.tolist()
|
|
longitudinalPlan.accels = self.a_desired_trajectory.tolist()
|
|
longitudinalPlan.jerks = self.j_desired_trajectory.tolist()
|
|
|
|
longitudinalPlan.hasLead = sm['radarState'].leadOne.status
|
|
longitudinalPlan.longitudinalPlanSource = self.mpc.source if self.mpc.source != 'cruise' else self.cruise_source
|
|
longitudinalPlan.fcw = self.fcw
|
|
|
|
longitudinalPlan.solverExecutionTime = self.mpc.solve_time
|
|
|
|
longitudinalPlan.visionTurnControllerState = self.vision_turn_controller.state
|
|
longitudinalPlan.visionTurnSpeed = float(self.vision_turn_controller.v_turn)
|
|
|
|
longitudinalPlan.speedLimitControlState = self.speed_limit_controller.state
|
|
longitudinalPlan.speedLimit = float(self.speed_limit_controller.speed_limit)
|
|
longitudinalPlan.speedLimitOffset = float(self.speed_limit_controller.speed_limit_offset)
|
|
longitudinalPlan.distToSpeedLimit = float(self.speed_limit_controller.distance)
|
|
longitudinalPlan.isMapSpeedLimit = bool(self.speed_limit_controller.source == SpeedLimitResolver.Source.map_data)
|
|
longitudinalPlan.eventsDEPRECATED = self.events.to_msg()
|
|
|
|
longitudinalPlan.turnSpeedControlState = self.turn_speed_controller.state
|
|
longitudinalPlan.turnSpeed = float(self.turn_speed_controller.speed_limit)
|
|
longitudinalPlan.distToTurn = float(self.turn_speed_controller.distance)
|
|
longitudinalPlan.turnSign = int(self.turn_speed_controller.turn_sign)
|
|
|
|
longitudinalPlan.dpE2EIsBlended = self.mpc.mode == 'blended'
|
|
|
|
pm.send('longitudinalPlan', plan_send)
|
|
|
|
def cruise_solutions(self, enabled, v_ego, a_ego, v_cruise, sm):
|
|
# Update controllers
|
|
self.vision_turn_controller.update(enabled, v_ego, a_ego, v_cruise, sm)
|
|
self.events = Events()
|
|
self.speed_limit_controller.update(enabled, v_ego, a_ego, sm, v_cruise, self.events)
|
|
self.turn_speed_controller.update(enabled, v_ego, a_ego, sm)
|
|
|
|
# Pick solution with lowest velocity target.
|
|
a_solutions = {'cruise': float("inf")}
|
|
v_solutions = {'cruise': v_cruise}
|
|
|
|
if self.vision_turn_controller.is_active:
|
|
a_solutions['turn'] = self.vision_turn_controller.a_target
|
|
v_solutions['turn'] = self.vision_turn_controller.v_turn
|
|
|
|
if self.speed_limit_controller.is_active:
|
|
a_solutions['limit'] = self.speed_limit_controller.a_target
|
|
v_solutions['limit'] = self.speed_limit_controller.speed_limit_offseted
|
|
|
|
if self.turn_speed_controller.is_active:
|
|
a_solutions['turnlimit'] = self.turn_speed_controller.a_target
|
|
v_solutions['turnlimit'] = self.turn_speed_controller.speed_limit
|
|
|
|
source = min(v_solutions, key=v_solutions.get)
|
|
|
|
return source, a_solutions[source], v_solutions[source]
|