openpilot v0.9.8 release

date: 2025-03-15T21:10:51
master commit: fb7b9c0f9420d228f03362970ebcfb7237095cf3
This commit is contained in:
Vehicle Researcher
2025-03-15 21:10:52 +00:00
committed by Adeeb Shihadeh
parent d64fb1838d
commit dd778596b7
2844 changed files with 557199 additions and 384479 deletions

View File

@@ -6,27 +6,24 @@ import usb1
import struct
import hashlib
import binascii
import logging
from functools import wraps, partial
from itertools import accumulate
from opendbc.car.structs import CarParams
from .base import BaseHandle
from .constants import FW_PATH, McuType
from .dfu import PandaDFU
from .isotp import isotp_send, isotp_recv
from .spi import PandaSpiHandle, PandaSpiException, PandaProtocolMismatch
from .usb import PandaUsbHandle
from .utils import logger
__version__ = '0.0.10'
# setup logging
LOGLEVEL = os.environ.get('LOGLEVEL', 'INFO').upper()
logging.basicConfig(level=LOGLEVEL, format='%(message)s')
CANPACKET_HEAD_SIZE = 0x6
DLC_TO_LEN = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 32, 48, 64]
LEN_TO_DLC = {length: dlc for (dlc, length) in enumerate(DLC_TO_LEN)}
PANDA_BUS_CNT = 4
PANDA_BUS_CNT = 3
def calculate_checksum(data):
@@ -35,17 +32,17 @@ def calculate_checksum(data):
res ^= b
return res
def pack_can_buffer(arr):
def pack_can_buffer(arr, fd=False):
snds = [b'']
for address, _, dat, bus in arr:
for address, dat, bus in arr:
assert len(dat) in LEN_TO_DLC
#logging.debug(" W 0x%x: 0x%s", address, dat.hex())
#logger.debug(" W 0x%x: 0x%s", address, dat.hex())
extended = 1 if address >= 0x800 else 0
data_len_code = LEN_TO_DLC[len(dat)]
header = bytearray(CANPACKET_HEAD_SIZE)
word_4b = address << 3 | extended << 2
header[0] = (data_len_code << 4) | (bus << 1)
header[0] = (data_len_code << 4) | (bus << 1) | int(fd)
header[1] = word_4b & 0xFF
header[2] = (word_4b >> 8) & 0xFF
header[3] = (word_4b >> 16) & 0xFF
@@ -85,7 +82,7 @@ def unpack_can_buffer(dat):
data = dat[CANPACKET_HEAD_SIZE:(CANPACKET_HEAD_SIZE+data_len)]
dat = dat[(CANPACKET_HEAD_SIZE+data_len):]
ret.append((address, 0, data, bus))
ret.append((address, data, bus))
return (ret, dat)
@@ -105,49 +102,15 @@ ensure_health_packet_version = partial(ensure_version, "health", "HEALTH_PACKET_
class ALTERNATIVE_EXPERIENCE:
DEFAULT = 0
DISABLE_DISENGAGE_ON_GAS = 1
DISABLE_STOCK_AEB = 2
RAISE_LONGITUDINAL_LIMITS_TO_ISO_MAX = 8
ALLOW_AEB = 16
class Panda:
# matches cereal.car.CarParams.SafetyModel
SAFETY_SILENT = 0
SAFETY_HONDA_NIDEC = 1
SAFETY_TOYOTA = 2
SAFETY_ELM327 = 3
SAFETY_GM = 4
SAFETY_HONDA_BOSCH_GIRAFFE = 5
SAFETY_FORD = 6
SAFETY_HYUNDAI = 8
SAFETY_CHRYSLER = 9
SAFETY_TESLA = 10
SAFETY_SUBARU = 11
SAFETY_MAZDA = 13
SAFETY_NISSAN = 14
SAFETY_VOLKSWAGEN_MQB = 15
SAFETY_ALLOUTPUT = 17
SAFETY_GM_ASCM = 18
SAFETY_NOOUTPUT = 19
SAFETY_HONDA_BOSCH = 20
SAFETY_VOLKSWAGEN_PQ = 21
SAFETY_SUBARU_PREGLOBAL = 22
SAFETY_HYUNDAI_LEGACY = 23
SAFETY_HYUNDAI_COMMUNITY = 24
SAFETY_STELLANTIS = 25
SAFETY_FAW = 26
SAFETY_BODY = 27
SAFETY_HYUNDAI_CANFD = 28
SERIAL_DEBUG = 0
SERIAL_ESP = 1
SERIAL_LIN1 = 2
SERIAL_LIN2 = 3
SERIAL_SOM_DEBUG = 4
USB_VIDS = (0xbbaa, 0x3801) # 0x3801 is comma's registered VID
USB_PIDS = (0xddee, 0xddcc)
REQUEST_IN = usb1.ENDPOINT_IN | usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE
REQUEST_OUT = usb1.ENDPOINT_OUT | usb1.TYPE_VENDOR | usb1.RECIPIENT_DEVICE
@@ -187,49 +150,7 @@ class Panda:
HARNESS_STATUS_NORMAL = 1
HARNESS_STATUS_FLIPPED = 2
# first byte is for EPS scaling factor
FLAG_TOYOTA_ALT_BRAKE = (1 << 8)
FLAG_TOYOTA_STOCK_LONGITUDINAL = (2 << 8)
FLAG_TOYOTA_LTA = (4 << 8)
FLAG_HONDA_ALT_BRAKE = 1
FLAG_HONDA_BOSCH_LONG = 2
FLAG_HONDA_NIDEC_ALT = 4
FLAG_HONDA_RADARLESS = 8
FLAG_HYUNDAI_EV_GAS = 1
FLAG_HYUNDAI_HYBRID_GAS = 2
FLAG_HYUNDAI_LONG = 4
FLAG_HYUNDAI_CAMERA_SCC = 8
FLAG_HYUNDAI_CANFD_HDA2 = 16
FLAG_HYUNDAI_CANFD_ALT_BUTTONS = 32
FLAG_HYUNDAI_ALT_LIMITS = 64
FLAG_HYUNDAI_CANFD_HDA2_ALT_STEERING = 128
FLAG_TESLA_POWERTRAIN = 1
FLAG_TESLA_LONG_CONTROL = 2
FLAG_TESLA_RAVEN = 4
FLAG_VOLKSWAGEN_LONG_CONTROL = 1
FLAG_CHRYSLER_RAM_DT = 1
FLAG_CHRYSLER_RAM_HD = 2
FLAG_SUBARU_GEN2 = 1
FLAG_SUBARU_LONG = 2
FLAG_SUBARU_PREGLOBAL_REVERSED_DRIVER_TORQUE = 1
FLAG_NISSAN_ALT_EPS_BUS = 1
FLAG_GM_HW_CAM = 1
FLAG_GM_HW_CAM_LONG = 2
FLAG_FORD_LONG_CONTROL = 1
FLAG_FORD_CANFD = 2
def __init__(self, serial: str | None = None, claim: bool = True, disable_checks: bool = True, can_speed_kbps: int = 500):
self._connect_serial = serial
def __init__(self, serial: str | None = None, claim: bool = True, disable_checks: bool = True, can_speed_kbps: int = 500, cli: bool = True):
self._disable_checks = disable_checks
self._handle: BaseHandle
@@ -237,9 +158,37 @@ class Panda:
self.can_rx_overflow_buffer = b''
self._can_speed_kbps = can_speed_kbps
if cli and serial is None:
self._connect_serial = self._cli_select_panda()
else:
self._connect_serial = serial
# connect and set mcu type
self.connect(claim)
def _cli_select_panda(self):
dfu_pandas = PandaDFU.list()
if len(dfu_pandas) > 0:
print("INFO: some attached pandas are in DFU mode.")
pandas = self.list()
if len(pandas) == 0:
print("INFO: panda not available")
return None
if len(pandas) == 1:
print(f"INFO: connecting to panda {pandas[0]}")
return pandas[0]
while True:
print("Multiple pandas available:")
pandas.sort()
for idx, serial in enumerate(pandas):
print(f"{[idx]}: {serial}")
try:
choice = int(input("Choose serial [0]:") or "0")
return pandas[choice]
except (ValueError, IndexError):
print("Enter a valid index.")
def __enter__(self):
return self
@@ -259,7 +208,7 @@ class Panda:
self._handle = None
while self._handle is None:
# try USB first, then SPI
self._context, self._handle, serial, self.bootstub, bcd = self.usb_connect(self._connect_serial, claim=claim)
self._context, self._handle, serial, self.bootstub, bcd = self.usb_connect(self._connect_serial, claim=claim, no_error=wait)
if self._handle is None:
self._context, self._handle, serial, self.bootstub, bcd = self.spi_connect(self._connect_serial)
if not wait:
@@ -290,7 +239,7 @@ class Panda:
self._handle_open = True
self._mcu_type = self.get_mcu_type()
self.health_version, self.can_version, self.can_health_version = self.get_packets_versions()
logging.debug("connected")
logger.debug("connected")
# disable openpilot's heartbeat checks
if self._disable_checks:
@@ -300,6 +249,10 @@ class Panda:
# reset comms
self.can_reset_communications()
# disable automatic CAN-FD switching
for bus in range(PANDA_BUS_CNT):
self.set_canfd_auto(bus, False)
# set CAN speed
for bus in range(PANDA_BUS_CNT):
self.set_can_speed_kbps(bus, self._can_speed_kbps)
@@ -351,21 +304,23 @@ class Panda:
return None, handle, spi_serial, bootstub, None
@classmethod
def usb_connect(cls, serial, claim=True):
def usb_connect(cls, serial, claim=True, no_error=False):
handle, usb_serial, bootstub, bcd = None, None, None, None
context = usb1.USBContext()
context.open()
try:
for device in context.getDeviceList(skip_on_error=True):
if device.getVendorID() == 0xbbaa and device.getProductID() in cls.USB_PIDS:
if device.getVendorID() in cls.USB_VIDS and device.getProductID() in cls.USB_PIDS:
try:
this_serial = device.getSerialNumber()
except Exception:
logging.exception("failed to get serial number of panda")
# Allow to ignore errors on reconnect. USB hubs need some time to initialize after panda reset
if not no_error:
logger.exception("failed to get serial number of panda")
continue
if serial is None or this_serial == serial:
logging.debug("opening device %s %s", this_serial, hex(device.getProductID()))
logger.debug("opening device %s %s", this_serial, hex(device.getProductID()))
usb_serial = this_serial
bootstub = (device.getProductID() & 0xF0) == 0xe0
@@ -383,7 +338,7 @@ class Panda:
break
except Exception:
logging.exception("USB connect error")
logger.exception("USB connect error")
usb_handle = None
if handle is not None:
@@ -393,6 +348,12 @@ class Panda:
return context, usb_handle, usb_serial, bootstub, bcd
def is_connected_spi(self):
return isinstance(self._handle, PandaSpiHandle)
def is_connected_usb(self):
return isinstance(self._handle, PandaUsbHandle)
@classmethod
def list(cls):
ret = cls.usb_list()
@@ -405,17 +366,17 @@ class Panda:
try:
with usb1.USBContext() as context:
for device in context.getDeviceList(skip_on_error=True):
if device.getVendorID() == 0xbbaa and device.getProductID() in cls.USB_PIDS:
if device.getVendorID() in cls.USB_VIDS and device.getProductID() in cls.USB_PIDS:
try:
serial = device.getSerialNumber()
if len(serial) == 24:
ret.append(serial)
else:
logging.warning(f"found device with panda descriptors but invalid serial: {serial}", RuntimeWarning)
logger.warning(f"found device with panda descriptors but invalid serial: {serial}", RuntimeWarning)
except Exception:
logging.exception("error connecting to panda")
logger.exception("error connecting to panda")
except Exception:
logging.exception("exception while listing pandas")
logger.exception("exception while listing pandas")
return ret
@classmethod
@@ -455,7 +416,7 @@ class Panda:
# wait up to 15 seconds
for _ in range(15*10):
try:
self.connect()
self.connect(claim=False, wait=True)
success = True
break
except Exception:
@@ -483,22 +444,22 @@ class Panda:
assert last_sector < 7, "Binary too large! Risk of overwriting provisioning chunk."
# unlock flash
logging.warning("flash: unlocking")
logger.info("flash: unlocking")
handle.controlWrite(Panda.REQUEST_IN, 0xb1, 0, 0, b'')
# erase sectors
logging.warning(f"flash: erasing sectors 1 - {last_sector}")
logger.info(f"flash: erasing sectors 1 - {last_sector}")
for i in range(1, last_sector + 1):
handle.controlWrite(Panda.REQUEST_IN, 0xb2, i, 0, b'')
# flash over EP2
STEP = 0x10
logging.warning("flash: flashing")
logger.info("flash: flashing")
for i in range(0, len(code), STEP):
handle.bulkWrite(2, code[i:i + STEP])
# reset
logging.warning("flash: resetting")
logger.info("flash: resetting")
try:
handle.controlWrite(Panda.REQUEST_IN, 0xd8, 0, 0, b'', expect_disconnect=True)
except Exception:
@@ -506,13 +467,13 @@ class Panda:
def flash(self, fn=None, code=None, reconnect=True):
if self.up_to_date(fn=fn):
logging.debug("flash: already up to date")
logger.info("flash: already up to date")
return
if not fn:
fn = os.path.join(FW_PATH, self._mcu_type.config.app_fn)
assert os.path.isfile(fn)
logging.debug("flash: main version is %s", self.get_version())
logger.debug("flash: main version is %s", self.get_version())
if not self.bootstub:
self.reset(enter_bootstub=True)
assert(self.bootstub)
@@ -522,7 +483,7 @@ class Panda:
code = f.read()
# get version
logging.debug("flash: bootstub version is %s", self.get_version())
logger.debug("flash: bootstub version is %s", self.get_version())
# do flash
Panda.flash_static(self._handle, code, mcu_type=self._mcu_type)
@@ -554,7 +515,7 @@ class Panda:
t_start = time.monotonic()
dfu_list = PandaDFU.list()
while (dfu_serial is None and len(dfu_list) == 0) or (dfu_serial is not None and dfu_serial not in dfu_list):
logging.debug("waiting for DFU...")
logger.debug("waiting for DFU...")
time.sleep(0.1)
if timeout is not None and (time.monotonic() - t_start) > timeout:
return False
@@ -566,7 +527,7 @@ class Panda:
t_start = time.monotonic()
serials = Panda.list()
while (serial is None and len(serials) == 0) or (serial is not None and serial not in serials):
logging.debug("waiting for panda...")
logger.debug("waiting for panda...")
time.sleep(0.1)
if timeout is not None and (time.monotonic() - t_start) > timeout:
return False
@@ -749,10 +710,13 @@ class Panda:
# ******************* configuration *******************
def set_alternative_experience(self, alternative_experience):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xdf, int(alternative_experience), 0, b'')
def set_power_save(self, power_save_enabled=0):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe7, int(power_save_enabled), 0, b'')
def set_safety_mode(self, mode=SAFETY_SILENT, param=0):
def set_safety_mode(self, mode=CarParams.SafetyModel.silent, param=0):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xdc, mode, param, b'')
def set_obd(self, obd):
@@ -775,6 +739,9 @@ class Panda:
def set_canfd_non_iso(self, bus, non_iso):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xfc, bus, int(non_iso), b'')
def set_canfd_auto(self, bus, auto):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe8, bus, int(auto), b'')
def set_uart_baud(self, uart, rate):
self._handle.controlWrite(Panda.REQUEST_OUT, 0xe4, uart, int(rate / 300), b'')
@@ -796,23 +763,15 @@ class Panda:
self._handle.controlWrite(Panda.REQUEST_OUT, 0xc0, 0, 0, b'')
@ensure_can_packet_version
def can_send_many(self, arr, timeout=CAN_SEND_TIMEOUT_MS):
snds = pack_can_buffer(arr)
while True:
try:
for tx in snds:
while True:
bs = self._handle.bulkWrite(3, tx, timeout=timeout)
tx = tx[bs:]
if len(tx) == 0:
break
logging.error("CAN: PARTIAL SEND MANY, RETRYING")
break
except (usb1.USBErrorIO, usb1.USBErrorOverflow):
logging.error("CAN: BAD SEND MANY, RETRYING")
def can_send_many(self, arr, *, fd=False, timeout=CAN_SEND_TIMEOUT_MS):
snds = pack_can_buffer(arr, fd=fd)
for tx in snds:
while len(tx) > 0:
bs = self._handle.bulkWrite(3, tx, timeout=timeout)
tx = tx[bs:]
def can_send(self, addr, dat, bus, timeout=CAN_SEND_TIMEOUT_MS):
self.can_send_many([[addr, None, dat, bus]], timeout=timeout)
def can_send(self, addr, dat, bus, *, fd=False, timeout=CAN_SEND_TIMEOUT_MS):
self.can_send_many([[addr, dat, bus]], fd=fd, timeout=timeout)
@ensure_can_packet_version
def can_recv(self):
@@ -822,7 +781,7 @@ class Panda:
dat = self._handle.bulkRead(1, 16384) # Max receive batch size + 2 extra reserve frames
break
except (usb1.USBErrorIO, usb1.USBErrorOverflow):
logging.error("CAN: BAD RECV, RETRYING")
logger.error("CAN: BAD RECV, RETRYING")
time.sleep(0.1)
msgs, self.can_rx_overflow_buffer = unpack_can_buffer(self.can_rx_overflow_buffer + dat)
return msgs
@@ -838,14 +797,6 @@ class Panda:
"""
self._handle.controlWrite(Panda.REQUEST_OUT, 0xf1, bus, 0, b'')
# ******************* isotp *******************
def isotp_send(self, addr, dat, bus, recvaddr=None, subaddr=None):
return isotp_send(self, dat, addr, bus, recvaddr, subaddr)
def isotp_recv(self, addr, bus=0, sendaddr=None, subaddr=None):
return isotp_recv(self, addr, bus, sendaddr, subaddr)
# ******************* serial *******************
def serial_read(self, port_number):

View File

@@ -1,53 +0,0 @@
import struct
import signal
from .base import BaseHandle
class CanHandle(BaseHandle):
def __init__(self, p, bus):
self.p = p
self.bus = bus
def transact(self, dat):
def _handle_timeout(signum, frame):
# will happen on reset or can error
raise TimeoutError
signal.signal(signal.SIGALRM, _handle_timeout)
signal.alarm(1)
try:
self.p.isotp_send(1, dat, self.bus, recvaddr=2)
finally:
signal.alarm(0)
signal.signal(signal.SIGALRM, _handle_timeout)
signal.alarm(1)
try:
ret = self.p.isotp_recv(2, self.bus, sendaddr=1)
finally:
signal.alarm(0)
return ret
def close(self):
pass
def controlWrite(self, request_type, request, value, index, data, timeout=0, expect_disconnect=False):
# ignore data in reply, panda doesn't use it
return self.controlRead(request_type, request, value, index, 0, timeout)
def controlRead(self, request_type, request, value, index, length, timeout=0):
dat = struct.pack("HHBBHHH", 0, 0, request_type, request, value, index, length)
return self.transact(dat)
def bulkWrite(self, endpoint, data, timeout=0):
if len(data) > 0x10:
raise ValueError("Data must not be longer than 0x10")
dat = struct.pack("HH", endpoint, len(data)) + data
return self.transact(dat)
def bulkRead(self, endpoint, length, timeout=0):
dat = struct.pack("HH", endpoint, 0)
return self.transact(dat)

View File

@@ -1,361 +0,0 @@
import sys
import time
import struct
from enum import IntEnum, Enum
class COMMAND_CODE(IntEnum):
CONNECT = 0x01
SET_MTA = 0x02
DNLOAD = 0x03
UPLOAD = 0x04
TEST = 0x05
START_STOP = 0x06
DISCONNECT = 0x07
START_STOP_ALL = 0x08
GET_ACTIVE_CAL_PAGE = 0x09
SET_S_STATUS = 0x0C
GET_S_STATUS = 0x0D
BUILD_CHKSUM = 0x0E
SHORT_UP = 0x0F
CLEAR_MEMORY = 0x10
SELECT_CAL_PAGE = 0x11
GET_SEED = 0x12
UNLOCK = 0x13
GET_DAQ_SIZE = 0x14
SET_DAQ_PTR = 0x15
WRITE_DAQ = 0x16
EXCHANGE_ID = 0x17
PROGRAM = 0x18
MOVE = 0x19
GET_CCP_VERSION = 0x1B
DIAG_SERVICE = 0x20
ACTION_SERVICE = 0x21
PROGRAM_6 = 0x22
DNLOAD_6 = 0x23
COMMAND_RETURN_CODES = {
0x00: "acknowledge / no error",
0x01: "DAQ processor overload",
0x10: "command processor busy",
0x11: "DAQ processor busy",
0x12: "internal timeout",
0x18: "key request",
0x19: "session status request",
0x20: "cold start request",
0x21: "cal. data init. request",
0x22: "DAQ list init. request",
0x23: "code update request",
0x30: "unknown command",
0x31: "command syntax",
0x32: "parameter(s) out of range",
0x33: "access denied",
0x34: "overload",
0x35: "access locked",
0x36: "resource/function not available",
}
class BYTE_ORDER(Enum):
LITTLE_ENDIAN = '<'
BIG_ENDIAN = '>'
class CommandTimeoutError(Exception):
pass
class CommandCounterError(Exception):
pass
class CommandResponseError(Exception):
def __init__(self, message, return_code):
super().__init__()
self.message = message
self.return_code = return_code
def __str__(self):
return self.message
class CcpClient():
def __init__(self, panda, tx_addr: int, rx_addr: int, bus: int=0, byte_order: BYTE_ORDER=BYTE_ORDER.BIG_ENDIAN, debug=False):
self.tx_addr = tx_addr
self.rx_addr = rx_addr
self.can_bus = bus
self.byte_order = byte_order
self.debug = debug
self._panda = panda
self._command_counter = -1
def _send_cro(self, cmd: int, dat: bytes = b"") -> None:
self._command_counter = (self._command_counter + 1) & 0xFF
tx_data = (bytes([cmd, self._command_counter]) + dat).ljust(8, b"\x00")
if self.debug:
print(f"CAN-TX: {hex(self.tx_addr)} - 0x{bytes.hex(tx_data)}")
assert len(tx_data) == 8, "data is not 8 bytes"
self._panda.can_clear(self.can_bus)
self._panda.can_clear(0xFFFF)
self._panda.can_send(self.tx_addr, tx_data, self.can_bus)
def _recv_dto(self, timeout: float) -> bytes:
start_time = time.time()
while time.time() - start_time < timeout:
msgs = self._panda.can_recv() or []
if len(msgs) >= 256:
print("CAN RX buffer overflow!!!", file=sys.stderr)
for rx_addr, _, rx_data_bytearray, rx_bus in msgs:
if rx_bus == self.can_bus and rx_addr == self.rx_addr:
rx_data = bytes(rx_data_bytearray)
if self.debug:
print(f"CAN-RX: {hex(rx_addr)} - 0x{bytes.hex(rx_data)}")
assert len(rx_data) == 8, f"message length not 8: {len(rx_data)}"
pid = rx_data[0]
if pid == 0xFF or pid == 0xFE:
err = rx_data[1]
err_desc = COMMAND_RETURN_CODES.get(err, "unknown error")
ctr = rx_data[2]
dat = rx_data[3:]
if pid == 0xFF and self._command_counter != ctr:
raise CommandCounterError(f"counter invalid: {ctr} != {self._command_counter}")
if err >= 0x10 and err <= 0x12:
if self.debug:
print(f"CCP-WAIT: {hex(err)} - {err_desc}")
start_time = time.time()
continue
if err >= 0x30:
raise CommandResponseError(f"{hex(err)} - {err_desc}", err)
else:
dat = rx_data[1:]
return dat
time.sleep(0.001)
raise CommandTimeoutError("timeout waiting for response")
# commands
def connect(self, station_addr: int) -> None:
if station_addr > 65535:
raise ValueError("station address must be less than 65536")
# NOTE: station address is always little endian
self._send_cro(COMMAND_CODE.CONNECT, struct.pack("<H", station_addr))
self._recv_dto(0.025)
def exchange_station_ids(self, device_id_info: bytes = b"") -> dict:
self._send_cro(COMMAND_CODE.EXCHANGE_ID, device_id_info)
resp = self._recv_dto(0.025)
return { # TODO: define a type
"id_length": resp[0],
"data_type": resp[1],
"available": resp[2],
"protected": resp[3],
}
def get_seed(self, resource_mask: int) -> bytes:
if resource_mask > 255:
raise ValueError("resource mask must be less than 256")
self._send_cro(COMMAND_CODE.GET_SEED)
resp = self._recv_dto(0.025)
# protected = resp[0] == 0
seed = resp[1:]
return seed
def unlock(self, key: bytes) -> int:
if len(key) > 6:
raise ValueError("max key size is 6 bytes")
self._send_cro(COMMAND_CODE.UNLOCK, key)
resp = self._recv_dto(0.025)
status = resp[0]
return status
def set_memory_transfer_address(self, mta_num: int, addr_ext: int, addr: int) -> None:
if mta_num > 255:
raise ValueError("MTA number must be less than 256")
if addr_ext > 255:
raise ValueError("address extension must be less than 256")
self._send_cro(COMMAND_CODE.SET_MTA, bytes([mta_num, addr_ext]) + struct.pack(f"{self.byte_order.value}I", addr))
self._recv_dto(0.025)
def download(self, data: bytes) -> int:
if len(data) > 5:
raise ValueError("max data size is 5 bytes")
self._send_cro(COMMAND_CODE.DNLOAD, bytes([len(data)]) + data)
resp = self._recv_dto(0.025)
# mta_addr_ext = resp[0]
mta_addr = struct.unpack(f"{self.byte_order.value}I", resp[1:5])[0]
return mta_addr # type: ignore
def download_6_bytes(self, data: bytes) -> int:
if len(data) != 6:
raise ValueError("data size must be 6 bytes")
self._send_cro(COMMAND_CODE.DNLOAD_6, data)
resp = self._recv_dto(0.025)
# mta_addr_ext = resp[0]
mta_addr = struct.unpack(f"{self.byte_order.value}I", resp[1:5])[0]
return mta_addr # type: ignore
def upload(self, size: int) -> bytes:
if size > 5:
raise ValueError("size must be less than 6")
self._send_cro(COMMAND_CODE.UPLOAD, bytes([size]))
return self._recv_dto(0.025)
def short_upload(self, size: int, addr_ext: int, addr: int) -> bytes:
if size > 5:
raise ValueError("size must be less than 6")
if addr_ext > 255:
raise ValueError("address extension must be less than 256")
self._send_cro(COMMAND_CODE.SHORT_UP, bytes([size, addr_ext]) + struct.pack(f"{self.byte_order.value}I", addr))
return self._recv_dto(0.025)
def select_calibration_page(self) -> None:
self._send_cro(COMMAND_CODE.SELECT_CAL_PAGE)
self._recv_dto(0.025)
def get_daq_list_size(self, list_num: int, can_id: int = 0) -> dict:
if list_num > 255:
raise ValueError("list number must be less than 256")
self._send_cro(COMMAND_CODE.GET_DAQ_SIZE, bytes([list_num, 0]) + struct.pack(f"{self.byte_order.value}I", can_id))
resp = self._recv_dto(0.025)
return { # TODO: define a type
"list_size": resp[0],
"first_pid": resp[1],
}
def set_daq_list_pointer(self, list_num: int, odt_num: int, element_num: int) -> None:
if list_num > 255:
raise ValueError("list number must be less than 256")
if odt_num > 255:
raise ValueError("ODT number must be less than 256")
if element_num > 255:
raise ValueError("element number must be less than 256")
self._send_cro(COMMAND_CODE.SET_DAQ_PTR, bytes([list_num, odt_num, element_num]))
self._recv_dto(0.025)
def write_daq_list_entry(self, size: int, addr_ext: int, addr: int) -> None:
if size > 255:
raise ValueError("size must be less than 256")
if addr_ext > 255:
raise ValueError("address extension must be less than 256")
self._send_cro(COMMAND_CODE.WRITE_DAQ, bytes([size, addr_ext]) + struct.pack(f"{self.byte_order.value}I", addr))
self._recv_dto(0.025)
def start_stop_transmission(self, mode: int, list_num: int, odt_num: int, channel_num: int, rate_prescaler: int = 0) -> None:
if mode > 255:
raise ValueError("mode must be less than 256")
if list_num > 255:
raise ValueError("list number must be less than 256")
if odt_num > 255:
raise ValueError("ODT number must be less than 256")
if channel_num > 255:
raise ValueError("channel number must be less than 256")
if rate_prescaler > 65535:
raise ValueError("rate prescaler must be less than 65536")
self._send_cro(COMMAND_CODE.START_STOP, bytes([mode, list_num, odt_num, channel_num]) + struct.pack(f"{self.byte_order.value}H", rate_prescaler))
self._recv_dto(0.025)
def disconnect(self, station_addr: int, temporary: bool = False) -> None:
if station_addr > 65535:
raise ValueError("station address must be less than 65536")
# NOTE: station address is always little endian
self._send_cro(COMMAND_CODE.DISCONNECT, bytes([int(not temporary), 0x00]) + struct.pack("<H", station_addr))
self._recv_dto(0.025)
def set_session_status(self, status: int) -> None:
if status > 255:
raise ValueError("status must be less than 256")
self._send_cro(COMMAND_CODE.SET_S_STATUS, bytes([status]))
self._recv_dto(0.025)
def get_session_status(self) -> dict:
self._send_cro(COMMAND_CODE.GET_S_STATUS)
resp = self._recv_dto(0.025)
return { # TODO: define a type
"status": resp[0],
"info": resp[2] if resp[1] else None,
}
def build_checksum(self, size: int) -> bytes:
self._send_cro(COMMAND_CODE.BUILD_CHKSUM, struct.pack(f"{self.byte_order.value}I", size))
resp = self._recv_dto(30.0)
chksum_size = resp[0]
assert chksum_size <= 4, "checksum more than 4 bytes"
chksum = resp[1:1+chksum_size]
return chksum
def clear_memory(self, size: int) -> None:
self._send_cro(COMMAND_CODE.CLEAR_MEMORY, struct.pack(f"{self.byte_order.value}I", size))
self._recv_dto(30.0)
def program(self, size: int, data: bytes) -> int:
if size > 5:
raise ValueError("size must be less than 6")
if len(data) > 5:
raise ValueError("max data size is 5 bytes")
self._send_cro(COMMAND_CODE.PROGRAM, bytes([size]) + data)
resp = self._recv_dto(0.1)
# mta_addr_ext = resp[0]
mta_addr = struct.unpack(f"{self.byte_order.value}I", resp[1:5])[0]
return mta_addr # type: ignore
def program_6_bytes(self, data: bytes) -> int:
if len(data) != 6:
raise ValueError("data size must be 6 bytes")
self._send_cro(COMMAND_CODE.PROGRAM_6, data)
resp = self._recv_dto(0.1)
# mta_addr_ext = resp[0]
mta_addr = struct.unpack(f"{self.byte_order.value}I", resp[1:5])[0]
return mta_addr # type: ignore
def move_memory_block(self, size: int) -> None:
self._send_cro(COMMAND_CODE.MOVE, struct.pack(f"{self.byte_order.value}I", size))
self._recv_dto(0.025)
def diagnostic_service(self, service_num: int, data: bytes = b"") -> dict:
if service_num > 65535:
raise ValueError("service number must be less than 65536")
if len(data) > 4:
raise ValueError("max data size is 4 bytes")
self._send_cro(COMMAND_CODE.DIAG_SERVICE, struct.pack(f"{self.byte_order.value}H", service_num) + data)
resp = self._recv_dto(0.025)
return { # TODO: define a type
"length": resp[0],
"type": resp[1],
}
def action_service(self, service_num: int, data: bytes = b"") -> dict:
if service_num > 65535:
raise ValueError("service number must be less than 65536")
if len(data) > 4:
raise ValueError("max data size is 4 bytes")
self._send_cro(COMMAND_CODE.ACTION_SERVICE, struct.pack(f"{self.byte_order.value}H", service_num) + data)
resp = self._recv_dto(0.025)
return { # TODO: define a type
"length": resp[0],
"type": resp[1],
}
def test_availability(self, station_addr: int) -> None:
if station_addr > 65535:
raise ValueError("station address must be less than 65536")
# NOTE: station address is always little endian
self._send_cro(COMMAND_CODE.TEST, struct.pack("<H", station_addr))
self._recv_dto(0.025)
def start_stop_synchronised_transmission(self, mode: int) -> None:
if mode > 255:
raise ValueError("mode must be less than 256")
self._send_cro(COMMAND_CODE.START_STOP_ALL, bytes([mode]))
self._recv_dto(0.025)
def get_active_calibration_page(self):
self._send_cro(COMMAND_CODE.GET_ACTIVE_CAL_PAGE)
resp = self._recv_dto(0.025)
# cal_addr_ext = resp[0]
cal_addr = struct.unpack(f"{self.byte_order.value}I", resp[1:5])[0]
return cal_addr
def get_version(self, desired_version: float = 2.1) -> float:
major, minor = map(int, str(desired_version).split("."))
self._send_cro(COMMAND_CODE.GET_CCP_VERSION, bytes([major, minor]))
resp = self._recv_dto(0.025)
return float(f"{resp[0]}.{resp[1]}")

View File

@@ -100,11 +100,14 @@ class PandaDFU:
def st_serial_to_dfu_serial(st: str, mcu_type: McuType = McuType.F4):
if st is None or st == "none":
return None
uid_base = struct.unpack("H" * 6, bytes.fromhex(st))
if mcu_type == McuType.H7:
return binascii.hexlify(struct.pack("!HHH", uid_base[1] + uid_base[5], uid_base[0] + uid_base[4], uid_base[3])).upper().decode("utf-8")
else:
return binascii.hexlify(struct.pack("!HHH", uid_base[1] + uid_base[5], uid_base[0] + uid_base[4] + 0xA, uid_base[3])).upper().decode("utf-8")
try:
uid_base = struct.unpack("H" * 6, bytes.fromhex(st))
if mcu_type == McuType.H7:
return binascii.hexlify(struct.pack("!HHH", uid_base[1] + uid_base[5], uid_base[0] + uid_base[4], uid_base[3])).upper().decode("utf-8")
else:
return binascii.hexlify(struct.pack("!HHH", uid_base[1] + uid_base[5], uid_base[0] + uid_base[4] + 0xA, uid_base[3])).upper().decode("utf-8")
except struct.error:
return None
def get_mcu_type(self) -> McuType:
return self._mcu_type

View File

@@ -1,140 +0,0 @@
import binascii
import time
DEBUG = False
def msg(x):
if DEBUG:
print("S:", binascii.hexlify(x))
assert len(x) <= 7
ret = bytes([len(x)]) + x
return ret.ljust(8, b"\x00")
kmsgs = []
def recv(panda, cnt, addr, nbus):
global kmsgs
ret = []
while len(ret) < cnt:
kmsgs += panda.can_recv()
nmsgs = []
for ids, ts, dat, bus in kmsgs:
if ids == addr and bus == nbus and len(ret) < cnt:
ret.append(dat)
else:
# leave around
nmsgs.append((ids, ts, dat, bus))
kmsgs = nmsgs[-256:]
return ret
def isotp_recv_subaddr(panda, addr, bus, sendaddr, subaddr):
msg = recv(panda, 1, addr, bus)[0]
# TODO: handle other subaddr also communicating
assert msg[0] == subaddr
if msg[1] & 0xf0 == 0x10:
# first
tlen = ((msg[1] & 0xf) << 8) | msg[2]
dat = msg[3:]
# 0 block size?
CONTINUE = bytes([subaddr]) + b"\x30" + b"\x00" * 6
panda.can_send(sendaddr, CONTINUE, bus)
idx = 1
for mm in recv(panda, (tlen - len(dat) + 5) // 6, addr, bus):
assert mm[0] == subaddr
assert mm[1] == (0x20 | (idx & 0xF))
dat += mm[2:]
idx += 1
elif msg[1] & 0xf0 == 0x00:
# single
tlen = msg[1] & 0xf
dat = msg[2:]
else:
print(binascii.hexlify(msg))
raise AssertionError
return dat[0:tlen]
# **** import below this line ****
def isotp_send(panda, x, addr, bus=0, recvaddr=None, subaddr=None, rate=None):
if recvaddr is None:
recvaddr = addr + 8
if len(x) <= 7 and subaddr is None:
panda.can_send(addr, msg(x), bus)
elif len(x) <= 6 and subaddr is not None:
panda.can_send(addr, bytes([subaddr]) + msg(x)[0:7], bus)
else:
if subaddr:
ss = bytes([subaddr, 0x10 + (len(x) >> 8), len(x) & 0xFF]) + x[0:5]
x = x[5:]
else:
ss = bytes([0x10 + (len(x) >> 8), len(x) & 0xFF]) + x[0:6]
x = x[6:]
idx = 1
sends = []
while len(x) > 0:
if subaddr:
sends.append((bytes([subaddr, 0x20 + (idx & 0xF)]) + x[0:6]).ljust(8, b"\x00"))
x = x[6:]
else:
sends.append((bytes([0x20 + (idx & 0xF)]) + x[0:7]).ljust(8, b"\x00"))
x = x[7:]
idx += 1
# actually send
panda.can_send(addr, ss, bus)
rr = recv(panda, 1, recvaddr, bus)[0]
if rr.find(b"\x30\x01") != -1:
for s in sends[:-1]:
panda.can_send(addr, s, 0)
rr = recv(panda, 1, recvaddr, bus)[0]
panda.can_send(addr, sends[-1], 0)
else:
if rate is None:
panda.can_send_many([(addr, None, s, bus) for s in sends])
else:
for dat in sends:
panda.can_send(addr, dat, bus)
time.sleep(rate)
def isotp_recv(panda, addr, bus=0, sendaddr=None, subaddr=None):
if sendaddr is None:
sendaddr = addr - 8
if subaddr is not None:
dat = isotp_recv_subaddr(panda, addr, bus, sendaddr, subaddr)
else:
msg = recv(panda, 1, addr, bus)[0]
if msg[0] & 0xf0 == 0x10:
# first
tlen = ((msg[0] & 0xf) << 8) | msg[1]
dat = msg[2:]
# 0 block size?
CONTINUE = b"\x30" + b"\x00" * 7
panda.can_send(sendaddr, CONTINUE, bus)
idx = 1
for mm in recv(panda, (tlen - len(dat) + 6) // 7, addr, bus):
assert mm[0] == (0x20 | (idx & 0xF))
dat += mm[1:]
idx += 1
elif msg[0] & 0xf0 == 0x00:
# single
tlen = msg[0] & 0xf
dat = msg[1:]
else:
raise AssertionError
dat = dat[0:tlen]
if DEBUG:
print("R:", binascii.hexlify(dat))
return dat

View File

@@ -0,0 +1,94 @@
import socket
import struct
# /**
# * struct canfd_frame - CAN flexible data rate frame structure
# * @can_id: CAN ID of the frame and CAN_*_FLAG flags, see canid_t definition
# * @len: frame payload length in byte (0 .. CANFD_MAX_DLEN)
# * @flags: additional flags for CAN FD
# * @__res0: reserved / padding
# * @__res1: reserved / padding
# * @data: CAN FD frame payload (up to CANFD_MAX_DLEN byte)
# */
# struct canfd_frame {
# canid_t can_id; /* 32 bit CAN_ID + EFF/RTR/ERR flags */
# __u8 len; /* frame payload length in byte */
# __u8 flags; /* additional flags for CAN FD */
# __u8 __res0; /* reserved / padding */
# __u8 __res1; /* reserved / padding */
# __u8 data[CANFD_MAX_DLEN] __attribute__((aligned(8)));
# };
CAN_HEADER_FMT = "=IBB2x"
CAN_HEADER_LEN = struct.calcsize(CAN_HEADER_FMT)
CAN_MAX_DLEN = 8
CANFD_MAX_DLEN = 64
CANFD_BRS = 0x01 # bit rate switch (second bitrate for payload data)
CANFD_FDF = 0x04 # mark CAN FD for dual use of struct canfd_frame
# socket.SO_RXQ_OVFL is missing
# https://github.com/torvalds/linux/blob/47ac09b91befbb6a235ab620c32af719f8208399/include/uapi/asm-generic/socket.h#L61
SO_RXQ_OVFL = 40
def create_socketcan(interface:str, recv_buffer_size:int, fd:bool) -> socket.socket:
# settings mostly from https://github.com/linux-can/can-utils/blob/master/candump.c
socketcan = socket.socket(socket.AF_CAN, socket.SOCK_RAW, socket.CAN_RAW)
if fd:
socketcan.setsockopt(socket.SOL_CAN_RAW, socket.CAN_RAW_FD_FRAMES, 1)
socketcan.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, recv_buffer_size)
# TODO: why is it always 2x the requested size?
assert socketcan.getsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF) == recv_buffer_size * 2
# TODO: how to dectect and alert on buffer overflow?
socketcan.setsockopt(socket.SOL_SOCKET, SO_RXQ_OVFL, 1)
socketcan.bind((interface,))
return socketcan
# Panda class substitute for socketcan device (to support using the uds/iso-tp/xcp/ccp library)
class SocketPanda():
def __init__(self, interface:str="can0", bus:int=0, fd:bool=False, recv_buffer_size:int=212992) -> None:
self.interface = interface
self.bus = bus
self.fd = fd
self.flags = CANFD_BRS | CANFD_FDF if fd else 0
self.data_len = CANFD_MAX_DLEN if fd else CAN_MAX_DLEN
self.recv_buffer_size = recv_buffer_size
self.socket = create_socketcan(interface, recv_buffer_size, fd)
def __del__(self):
self.socket.close()
def get_serial(self) -> tuple[int, int]:
return (0, 0) # TODO: implemented in panda socketcan driver
def get_version(self) -> int:
return 0 # TODO: implemented in panda socketcan driver
def can_clear(self, bus:int) -> None:
# TODO: implemented in panda socketcan driver
self.socket.close()
self.socket = create_socketcan(self.interface, self.recv_buffer_size, self.fd)
def set_safety_mode(self, mode:int, param=0) -> None:
pass # TODO: implemented in panda socketcan driver
def has_obd(self) -> bool:
return False # TODO: implemented in panda socketcan driver
def can_send(self, addr, dat, bus=0, timeout=0) -> None:
msg_len = len(dat)
msg_dat = dat.ljust(self.data_len, b'\x00')
can_frame = struct.pack(CAN_HEADER_FMT, addr, msg_len, self.flags) + msg_dat
self.socket.sendto(can_frame, (self.interface,))
def can_recv(self) -> list[tuple[int, bytes, int]]:
msgs = list()
while True:
try:
dat, _ = self.socket.recvfrom(self.recv_buffer_size, socket.MSG_DONTWAIT)
assert len(dat) == CAN_HEADER_LEN + self.data_len, f"ERROR: received {len(dat)} bytes"
can_id, msg_len, _ = struct.unpack(CAN_HEADER_FMT, dat[:CAN_HEADER_LEN])
msg_dat = dat[CAN_HEADER_LEN:CAN_HEADER_LEN+msg_len]
msgs.append((can_id, msg_dat, self.bus))
except BlockingIOError:
break # buffered data exhausted
return msgs

View File

@@ -5,7 +5,6 @@ import fcntl
import math
import time
import struct
import logging
import threading
from contextlib import contextmanager
from functools import reduce
@@ -13,6 +12,7 @@ from collections.abc import Callable
from .base import BaseHandle, BaseSTBootloaderHandle, TIMEOUT
from .constants import McuType, MCU_TYPE_BY_IDCODE, USBPACKET_MAX_SIZE
from .utils import logger
try:
import spidev
@@ -70,8 +70,6 @@ class PandaSpiTransferFailed(PandaSpiException):
pass
SPI_LOCK = threading.Lock()
class PandaSpiTransfer(ctypes.Structure):
_fields_ = [
('rx_buf', ctypes.c_uint64),
@@ -83,6 +81,9 @@ class PandaSpiTransfer(ctypes.Structure):
('expect_disconnect', ctypes.c_uint8),
]
SPI_LOCK = threading.Lock()
SPI_DEVICES = {}
class SpiDevice:
"""
Provides locked, thread-safe access to a panda's SPI interface.
@@ -100,9 +101,12 @@ class SpiDevice:
if spidev is None:
raise PandaSpiUnavailable("spidev is not installed")
self._spidev = spidev.SpiDev() # pylint: disable=c-extension-no-member
self._spidev.open(0, 0)
self._spidev.max_speed_hz = speed
with SPI_LOCK:
if speed not in SPI_DEVICES:
SPI_DEVICES[speed] = spidev.SpiDev() # pylint: disable=c-extension-no-member
SPI_DEVICES[speed].open(0, 0)
SPI_DEVICES[speed].max_speed_hz = speed
self._spidev = SPI_DEVICES[speed]
@contextmanager
def acquire(self):
@@ -115,8 +119,7 @@ class SpiDevice:
SPI_LOCK.release()
def close(self):
self._spidev.close()
pass
class PandaSpiHandle(BaseHandle):
@@ -167,23 +170,23 @@ class PandaSpiHandle(BaseHandle):
def _transfer_spidev(self, spi, endpoint: int, data, timeout: int, max_rx_len: int = 1000, expect_disconnect: bool = False) -> bytes:
max_rx_len = max(USBPACKET_MAX_SIZE, max_rx_len)
logging.debug("- send header")
logger.debug("- send header")
packet = struct.pack("<BBHH", SYNC, endpoint, len(data), max_rx_len)
packet += bytes([self._calc_checksum(packet), ])
spi.xfer2(packet)
logging.debug("- waiting for header ACK")
logger.debug("- waiting for header ACK")
self._wait_for_ack(spi, HACK, MIN_ACK_TIMEOUT_MS, 0x11)
logging.debug("- sending data")
logger.debug("- sending data")
packet = bytes([*data, self._calc_checksum(data)])
spi.xfer2(packet)
if expect_disconnect:
logging.debug("- expecting disconnect, returning")
logger.debug("- expecting disconnect, returning")
return b""
else:
logging.debug("- waiting for data ACK")
logger.debug("- waiting for data ACK")
preread_len = USBPACKET_MAX_SIZE + 1 # read enough for a controlRead
dat = self._wait_for_ack(spi, DACK, timeout, 0x13, length=3 + preread_len)
@@ -222,21 +225,21 @@ class PandaSpiHandle(BaseHandle):
return bytes(self.rx_buf[:ret])
def _transfer(self, endpoint: int, data, timeout: int, max_rx_len: int = 1000, expect_disconnect: bool = False) -> bytes:
logging.debug("starting transfer: endpoint=%d, max_rx_len=%d", endpoint, max_rx_len)
logging.debug("==============================================")
logger.debug("starting transfer: endpoint=%d, max_rx_len=%d", endpoint, max_rx_len)
logger.debug("==============================================")
n = 0
start_time = time.monotonic()
exc = PandaSpiException()
while (timeout == 0) or (time.monotonic() - start_time) < timeout*1e-3:
n += 1
logging.debug("\ntry #%d", n)
logger.debug("\ntry #%d", n)
with self.dev.acquire() as spi:
try:
return self._transfer_raw(spi, endpoint, data, timeout, max_rx_len, expect_disconnect)
except PandaSpiException as e:
exc = e
logging.debug("SPI transfer failed, retrying", exc_info=True)
logger.debug("SPI transfer failed, retrying", exc_info=True)
raise exc
@@ -245,7 +248,7 @@ class PandaSpiHandle(BaseHandle):
def _get_version(spi) -> bytes:
spi.writebytes(vers_str)
logging.debug("- waiting for echo")
logger.debug("- waiting for echo")
start = time.monotonic()
while True:
version_bytes = spi.readbytes(len(vers_str) + 2)
@@ -273,7 +276,7 @@ class PandaSpiHandle(BaseHandle):
return _get_version(spi)
except PandaSpiException as e:
exc = e
logging.debug("SPI get protocol version failed, retrying", exc_info=True)
logger.debug("SPI get protocol version failed, retrying", exc_info=True)
raise exc
# libusb1 functions
@@ -378,7 +381,7 @@ class STBootloaderSPIHandle(BaseSTBootloaderHandle):
return self._cmd_no_retry(cmd, data, read_bytes, predata)
except PandaSpiException as e:
exc = e
logging.debug("SPI transfer failed, %d retries left", MAX_XFER_RETRY_COUNT - n - 1, exc_info=True)
logger.debug("SPI transfer failed, %d retries left", MAX_XFER_RETRY_COUNT - n - 1, exc_info=True)
raise exc
def _checksum(self, data: bytes) -> bytes:
@@ -394,9 +397,13 @@ class STBootloaderSPIHandle(BaseSTBootloaderHandle):
data = [struct.pack('>I', address), struct.pack('B', length - 1)]
return self._cmd(0x11, data=data, read_bytes=length)
def get_bootloader_id(self):
return self.read(0x1FF1E7FE, 1)
def get_chip_id(self) -> int:
r = self._cmd(0x02, read_bytes=3)
assert r[0] == 1 # response length - 1
if r[0] != 1: # response length - 1
raise PandaSpiException("incorrect response length")
return ((r[1] << 8) + r[2])
def go_cmd(self, address: int) -> None:

View File

@@ -1,943 +0,0 @@
import time
import struct
from collections import deque
from typing import NamedTuple, Deque, cast
from collections.abc import Callable, Generator
from enum import IntEnum
from functools import partial
class SERVICE_TYPE(IntEnum):
DIAGNOSTIC_SESSION_CONTROL = 0x10
ECU_RESET = 0x11
SECURITY_ACCESS = 0x27
COMMUNICATION_CONTROL = 0x28
TESTER_PRESENT = 0x3E
ACCESS_TIMING_PARAMETER = 0x83
SECURED_DATA_TRANSMISSION = 0x84
CONTROL_DTC_SETTING = 0x85
RESPONSE_ON_EVENT = 0x86
LINK_CONTROL = 0x87
READ_DATA_BY_IDENTIFIER = 0x22
READ_MEMORY_BY_ADDRESS = 0x23
READ_SCALING_DATA_BY_IDENTIFIER = 0x24
READ_DATA_BY_PERIODIC_IDENTIFIER = 0x2A
DYNAMICALLY_DEFINE_DATA_IDENTIFIER = 0x2C
WRITE_DATA_BY_IDENTIFIER = 0x2E
WRITE_MEMORY_BY_ADDRESS = 0x3D
CLEAR_DIAGNOSTIC_INFORMATION = 0x14
READ_DTC_INFORMATION = 0x19
INPUT_OUTPUT_CONTROL_BY_IDENTIFIER = 0x2F
ROUTINE_CONTROL = 0x31
REQUEST_DOWNLOAD = 0x34
REQUEST_UPLOAD = 0x35
TRANSFER_DATA = 0x36
REQUEST_TRANSFER_EXIT = 0x37
class SESSION_TYPE(IntEnum):
DEFAULT = 1
PROGRAMMING = 2
EXTENDED_DIAGNOSTIC = 3
SAFETY_SYSTEM_DIAGNOSTIC = 4
class RESET_TYPE(IntEnum):
HARD = 1
KEY_OFF_ON = 2
SOFT = 3
ENABLE_RAPID_POWER_SHUTDOWN = 4
DISABLE_RAPID_POWER_SHUTDOWN = 5
class ACCESS_TYPE(IntEnum):
REQUEST_SEED = 1
SEND_KEY = 2
class CONTROL_TYPE(IntEnum):
ENABLE_RX_ENABLE_TX = 0
ENABLE_RX_DISABLE_TX = 1
DISABLE_RX_ENABLE_TX = 2
DISABLE_RX_DISABLE_TX = 3
class MESSAGE_TYPE(IntEnum):
NORMAL = 1
NETWORK_MANAGEMENT = 2
NORMAL_AND_NETWORK_MANAGEMENT = 3
class TIMING_PARAMETER_TYPE(IntEnum):
READ_EXTENDED_SET = 1
SET_TO_DEFAULT_VALUES = 2
READ_CURRENTLY_ACTIVE = 3
SET_TO_GIVEN_VALUES = 4
class DTC_SETTING_TYPE(IntEnum):
ON = 1
OFF = 2
class RESPONSE_EVENT_TYPE(IntEnum):
STOP_RESPONSE_ON_EVENT = 0
ON_DTC_STATUS_CHANGE = 1
ON_TIMER_INTERRUPT = 2
ON_CHANGE_OF_DATA_IDENTIFIER = 3
REPORT_ACTIVATED_EVENTS = 4
START_RESPONSE_ON_EVENT = 5
CLEAR_RESPONSE_ON_EVENT = 6
ON_COMPARISON_OF_VALUES = 7
class LINK_CONTROL_TYPE(IntEnum):
VERIFY_BAUDRATE_TRANSITION_WITH_FIXED_BAUDRATE = 1
VERIFY_BAUDRATE_TRANSITION_WITH_SPECIFIC_BAUDRATE = 2
TRANSITION_BAUDRATE = 3
class BAUD_RATE_TYPE(IntEnum):
PC9600 = 1
PC19200 = 2
PC38400 = 3
PC57600 = 4
PC115200 = 5
CAN125000 = 16
CAN250000 = 17
CAN500000 = 18
CAN1000000 = 19
class DATA_IDENTIFIER_TYPE(IntEnum):
BOOT_SOFTWARE_IDENTIFICATION = 0xF180
APPLICATION_SOFTWARE_IDENTIFICATION = 0xF181
APPLICATION_DATA_IDENTIFICATION = 0xF182
BOOT_SOFTWARE_FINGERPRINT = 0xF183
APPLICATION_SOFTWARE_FINGERPRINT = 0xF184
APPLICATION_DATA_FINGERPRINT = 0xF185
ACTIVE_DIAGNOSTIC_SESSION = 0xF186
VEHICLE_MANUFACTURER_SPARE_PART_NUMBER = 0xF187
VEHICLE_MANUFACTURER_ECU_SOFTWARE_NUMBER = 0xF188
VEHICLE_MANUFACTURER_ECU_SOFTWARE_VERSION_NUMBER = 0xF189
SYSTEM_SUPPLIER_IDENTIFIER = 0xF18A
ECU_MANUFACTURING_DATE = 0xF18B
ECU_SERIAL_NUMBER = 0xF18C
SUPPORTED_FUNCTIONAL_UNITS = 0xF18D
VEHICLE_MANUFACTURER_KIT_ASSEMBLY_PART_NUMBER = 0xF18E
VIN = 0xF190
VEHICLE_MANUFACTURER_ECU_HARDWARE_NUMBER = 0xF191
SYSTEM_SUPPLIER_ECU_HARDWARE_NUMBER = 0xF192
SYSTEM_SUPPLIER_ECU_HARDWARE_VERSION_NUMBER = 0xF193
SYSTEM_SUPPLIER_ECU_SOFTWARE_NUMBER = 0xF194
SYSTEM_SUPPLIER_ECU_SOFTWARE_VERSION_NUMBER = 0xF195
EXHAUST_REGULATION_OR_TYPE_APPROVAL_NUMBER = 0xF196
SYSTEM_NAME_OR_ENGINE_TYPE = 0xF197
REPAIR_SHOP_CODE_OR_TESTER_SERIAL_NUMBER = 0xF198
PROGRAMMING_DATE = 0xF199
CALIBRATION_REPAIR_SHOP_CODE_OR_CALIBRATION_EQUIPMENT_SERIAL_NUMBER = 0xF19A
CALIBRATION_DATE = 0xF19B
CALIBRATION_EQUIPMENT_SOFTWARE_NUMBER = 0xF19C
ECU_INSTALLATION_DATE = 0xF19D
ODX_FILE = 0xF19E
ENTITY = 0xF19F
class TRANSMISSION_MODE_TYPE(IntEnum):
SEND_AT_SLOW_RATE = 1
SEND_AT_MEDIUM_RATE = 2
SEND_AT_FAST_RATE = 3
STOP_SENDING = 4
class DYNAMIC_DEFINITION_TYPE(IntEnum):
DEFINE_BY_IDENTIFIER = 1
DEFINE_BY_MEMORY_ADDRESS = 2
CLEAR_DYNAMICALLY_DEFINED_DATA_IDENTIFIER = 3
class ISOTP_FRAME_TYPE(IntEnum):
SINGLE = 0
FIRST = 1
CONSECUTIVE = 2
FLOW = 3
class DynamicSourceDefinition(NamedTuple):
data_identifier: int
position: int
memory_size: int
memory_address: int
class DTC_GROUP_TYPE(IntEnum):
EMISSIONS = 0x000000
ALL = 0xFFFFFF
class DTC_REPORT_TYPE(IntEnum):
NUMBER_OF_DTC_BY_STATUS_MASK = 0x01
DTC_BY_STATUS_MASK = 0x02
DTC_SNAPSHOT_IDENTIFICATION = 0x03
DTC_SNAPSHOT_RECORD_BY_DTC_NUMBER = 0x04
DTC_SNAPSHOT_RECORD_BY_RECORD_NUMBER = 0x05
DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER = 0x06
NUMBER_OF_DTC_BY_SEVERITY_MASK_RECORD = 0x07
DTC_BY_SEVERITY_MASK_RECORD = 0x08
SEVERITY_INFORMATION_OF_DTC = 0x09
SUPPORTED_DTC = 0x0A
FIRST_TEST_FAILED_DTC = 0x0B
FIRST_CONFIRMED_DTC = 0x0C
MOST_RECENT_TEST_FAILED_DTC = 0x0D
MOST_RECENT_CONFIRMED_DTC = 0x0E
MIRROR_MEMORY_DTC_BY_STATUS_MASK = 0x0F
MIRROR_MEMORY_DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER = 0x10
NUMBER_OF_MIRROR_MEMORY_DTC_BY_STATUS_MASK = 0x11
NUMBER_OF_EMISSIONS_RELATED_OBD_DTC_BY_STATUS_MASK = 0x12
EMISSIONS_RELATED_OBD_DTC_BY_STATUS_MASK = 0x13
DTC_FAULT_DETECTION_COUNTER = 0x14
DTC_WITH_PERMANENT_STATUS = 0x15
class DTC_STATUS_MASK_TYPE(IntEnum):
TEST_FAILED = 0x01
TEST_FAILED_THIS_OPERATION_CYCLE = 0x02
PENDING_DTC = 0x04
CONFIRMED_DTC = 0x08
TEST_NOT_COMPLETED_SINCE_LAST_CLEAR = 0x10
TEST_FAILED_SINCE_LAST_CLEAR = 0x20
TEST_NOT_COMPLETED_THIS_OPERATION_CYCLE = 0x40
WARNING_INDICATOR_REQUESTED = 0x80
ALL = 0xFF
class DTC_SEVERITY_MASK_TYPE(IntEnum):
MAINTENANCE_ONLY = 0x20
CHECK_AT_NEXT_HALT = 0x40
CHECK_IMMEDIATELY = 0x80
ALL = 0xE0
class CONTROL_PARAMETER_TYPE(IntEnum):
RETURN_CONTROL_TO_ECU = 0
RESET_TO_DEFAULT = 1
FREEZE_CURRENT_STATE = 2
SHORT_TERM_ADJUSTMENT = 3
class ROUTINE_CONTROL_TYPE(IntEnum):
START = 1
STOP = 2
REQUEST_RESULTS = 3
class ROUTINE_IDENTIFIER_TYPE(IntEnum):
ERASE_MEMORY = 0xFF00
CHECK_PROGRAMMING_DEPENDENCIES = 0xFF01
ERASE_MIRROR_MEMORY_DTCS = 0xFF02
class MessageTimeoutError(Exception):
pass
class NegativeResponseError(Exception):
def __init__(self, message, service_id, error_code):
super().__init__()
self.message = message
self.service_id = service_id
self.error_code = error_code
def __str__(self):
return self.message
class InvalidServiceIdError(Exception):
pass
class InvalidSubFunctionError(Exception):
pass
class InvalidSubAddressError(Exception):
pass
_negative_response_codes = {
0x00: 'positive response',
0x10: 'general reject',
0x11: 'service not supported',
0x12: 'sub-function not supported',
0x13: 'incorrect message length or invalid format',
0x14: 'response too long',
0x21: 'busy repeat request',
0x22: 'conditions not correct',
0x24: 'request sequence error',
0x25: 'no response from subnet component',
0x26: 'failure prevents execution of requested action',
0x31: 'request out of range',
0x33: 'security access denied',
0x35: 'invalid key',
0x36: 'exceed number of attempts',
0x37: 'required time delay not expired',
0x70: 'upload download not accepted',
0x71: 'transfer data suspended',
0x72: 'general programming failure',
0x73: 'wrong block sequence counter',
0x78: 'request correctly received - response pending',
0x7e: 'sub-function not supported in active session',
0x7f: 'service not supported in active session',
0x81: 'rpm too high',
0x82: 'rpm too low',
0x83: 'engine is running',
0x84: 'engine is not running',
0x85: 'engine run time too low',
0x86: 'temperature too high',
0x87: 'temperature too low',
0x88: 'vehicle speed too high',
0x89: 'vehicle speed too low',
0x8a: 'throttle/pedal too high',
0x8b: 'throttle/pedal too low',
0x8c: 'transmission not in neutral',
0x8d: 'transmission not in gear',
0x8f: 'brake switch(es) not closed',
0x90: 'shifter lever not in park',
0x91: 'torque converter clutch locked',
0x92: 'voltage too high',
0x93: 'voltage too low',
}
def get_dtc_num_as_str(dtc_num_bytes):
# ISO 15031-6
designator = {
0b00: "P",
0b01: "C",
0b10: "B",
0b11: "U",
}
d = designator[dtc_num_bytes[0] >> 6]
n = bytes([dtc_num_bytes[0] & 0x3F]) + dtc_num_bytes[1:]
return d + n.hex()
def get_dtc_status_names(status):
result = list()
for m in DTC_STATUS_MASK_TYPE:
if m == DTC_STATUS_MASK_TYPE.ALL:
continue
if status & m.value:
result.append(m.name)
return result
class CanClient():
def __init__(self, can_send: Callable[[int, bytes, int], None], can_recv: Callable[[], list[tuple[int, int, bytes, int]]],
tx_addr: int, rx_addr: int, bus: int, sub_addr: int | None = None, debug: bool = False):
self.tx = can_send
self.rx = can_recv
self.tx_addr = tx_addr
self.rx_addr = rx_addr
self.rx_buff: Deque[bytes] = deque()
self.sub_addr = sub_addr
self.bus = bus
self.debug = debug
def _recv_filter(self, bus: int, addr: int) -> bool:
# handle functional addresses (switch to first addr to respond)
if self.tx_addr == 0x7DF:
is_response = addr >= 0x7E8 and addr <= 0x7EF
if is_response:
if self.debug:
print(f"switch to physical addr {hex(addr)}")
self.tx_addr = addr - 8
self.rx_addr = addr
return is_response
if self.tx_addr == 0x18DB33F1:
is_response = addr >= 0x18DAF100 and addr <= 0x18DAF1FF
if is_response:
if self.debug:
print(f"switch to physical addr {hex(addr)}")
self.tx_addr = 0x18DA00F1 + (addr << 8 & 0xFF00)
self.rx_addr = addr
return bus == self.bus and addr == self.rx_addr
def _recv_buffer(self, drain: bool = False) -> None:
while True:
msgs = self.rx()
if drain:
if self.debug:
print(f"CAN-RX: drain - {len(msgs)}")
self.rx_buff.clear()
else:
for rx_addr, _, rx_data, rx_bus in msgs or []:
if self._recv_filter(rx_bus, rx_addr) and len(rx_data) > 0:
rx_data = bytes(rx_data) # convert bytearray to bytes
if self.debug:
print(f"CAN-RX: {hex(rx_addr)} - 0x{bytes.hex(rx_data)}")
# Cut off sub addr in first byte
if self.sub_addr is not None:
if rx_data[0] != self.sub_addr:
raise InvalidSubAddressError(f"isotp - rx: invalid sub-address: {rx_data[0]}, expected: {self.sub_addr}")
rx_data = rx_data[1:]
self.rx_buff.append(rx_data)
# break when non-full buffer is processed
if len(msgs) < 254:
return
def recv(self, drain: bool = False) -> Generator[bytes, None, None]:
# buffer rx messages in case two response messages are received at once
# (e.g. response pending and success/failure response)
self._recv_buffer(drain)
try:
while True:
yield self.rx_buff.popleft()
except IndexError:
pass # empty
def send(self, msgs: list[bytes], delay: float = 0) -> None:
for i, msg in enumerate(msgs):
if delay and i != 0:
if self.debug:
print(f"CAN-TX: delay - {delay}")
time.sleep(delay)
if self.sub_addr is not None:
msg = bytes([self.sub_addr]) + msg
if self.debug:
print(f"CAN-TX: {hex(self.tx_addr)} - 0x{bytes.hex(msg)}")
assert len(msg) <= 8
self.tx(self.tx_addr, msg, self.bus)
# prevent rx buffer from overflowing on large tx
if i % 10 == 9:
self._recv_buffer()
class IsoTpMessage():
def __init__(self, can_client: CanClient, timeout: float = 1, single_frame_mode: bool = False, separation_time: float = 0,
debug: bool = False, max_len: int = 8):
self._can_client = can_client
self.timeout = timeout
self.single_frame_mode = single_frame_mode
self.debug = debug
self.max_len = max_len
# <= 127, separation time in milliseconds
# 0xF1 to 0xF9 UF, 100 to 900 microseconds
if 1e-4 <= separation_time <= 9e-4:
offset = int(round(separation_time, 4) * 1e4) - 1
separation_time = 0xF1 + offset
elif 0 <= separation_time <= 0.127:
separation_time = round(separation_time * 1000)
else:
raise Exception("Separation time not in range")
self.flow_control_msg = bytes([
0x30, # flow control
0x01 if self.single_frame_mode else 0x00, # block size
separation_time,
]).ljust(self.max_len, b"\x00")
def send(self, dat: bytes, setup_only: bool = False) -> None:
# throw away any stale data
self._can_client.recv(drain=True)
self.tx_dat = dat
self.tx_len = len(dat)
self.tx_idx = 0
self.tx_done = False
self.rx_dat = b""
self.rx_len = 0
self.rx_idx = 0
self.rx_done = False
if self.debug and not setup_only:
print(f"ISO-TP: REQUEST - {hex(self._can_client.tx_addr)} 0x{bytes.hex(self.tx_dat)}")
self._tx_first_frame(setup_only=setup_only)
def _tx_first_frame(self, setup_only: bool = False) -> None:
if self.tx_len < self.max_len:
# single frame (send all bytes)
if self.debug and not setup_only:
print(f"ISO-TP: TX - single frame - {hex(self._can_client.tx_addr)}")
msg = (bytes([self.tx_len]) + self.tx_dat).ljust(self.max_len, b"\x00")
self.tx_done = True
else:
# first frame (send first 6 bytes)
if self.debug and not setup_only:
print(f"ISO-TP: TX - first frame - {hex(self._can_client.tx_addr)}")
msg = (struct.pack("!H", 0x1000 | self.tx_len) + self.tx_dat[:self.max_len - 2]).ljust(self.max_len - 2, b"\x00")
if not setup_only:
self._can_client.send([msg])
def recv(self, timeout=None) -> tuple[bytes | None, bool]:
if timeout is None:
timeout = self.timeout
start_time = time.monotonic()
rx_in_progress = False
try:
while True:
for msg in self._can_client.recv():
frame_type = self._isotp_rx_next(msg)
start_time = time.monotonic()
# Anything that signifies we're building a response
rx_in_progress = frame_type in (ISOTP_FRAME_TYPE.FIRST, ISOTP_FRAME_TYPE.CONSECUTIVE)
if self.tx_done and self.rx_done:
return self.rx_dat, False
# no timeout indicates non-blocking
if timeout == 0:
return None, rx_in_progress
if time.monotonic() - start_time > timeout:
raise MessageTimeoutError("timeout waiting for response")
finally:
if self.debug and self.rx_dat:
print(f"ISO-TP: RESPONSE - {hex(self._can_client.rx_addr)} 0x{bytes.hex(self.rx_dat)}")
def _isotp_rx_next(self, rx_data: bytes) -> ISOTP_FRAME_TYPE:
# TODO: Handle CAN frame data optimization, which is allowed with some frame types
# # ISO 15765-2 specifies an eight byte CAN frame for ISO-TP communication
# assert len(rx_data) == self.max_len, f"isotp - rx: invalid CAN frame length: {len(rx_data)}"
if rx_data[0] >> 4 == ISOTP_FRAME_TYPE.SINGLE:
assert self.rx_dat == b"" or self.rx_done, "isotp - rx: single frame with active frame"
self.rx_len = rx_data[0] & 0x0F
assert self.rx_len < self.max_len, f"isotp - rx: invalid single frame length: {self.rx_len}"
self.rx_dat = rx_data[1:1 + self.rx_len]
self.rx_idx = 0
self.rx_done = True
if self.debug:
print(f"ISO-TP: RX - single frame - {hex(self._can_client.rx_addr)} idx={self.rx_idx} done={self.rx_done}")
return ISOTP_FRAME_TYPE.SINGLE
elif rx_data[0] >> 4 == ISOTP_FRAME_TYPE.FIRST:
# Once a first frame is received, further frames must be consecutive
assert self.rx_dat == b"" or self.rx_done, "isotp - rx: first frame with active frame"
self.rx_len = ((rx_data[0] & 0x0F) << 8) + rx_data[1]
assert self.rx_len >= self.max_len, f"isotp - rx: invalid first frame length: {self.rx_len}"
assert len(rx_data) == self.max_len, f"isotp - rx: invalid CAN frame length: {len(rx_data)}"
self.rx_dat = rx_data[2:]
self.rx_idx = 0
self.rx_done = False
if self.debug:
print(f"ISO-TP: RX - first frame - {hex(self._can_client.rx_addr)} idx={self.rx_idx} done={self.rx_done}")
if self.debug:
print(f"ISO-TP: TX - flow control continue - {hex(self._can_client.tx_addr)}")
# send flow control message
self._can_client.send([self.flow_control_msg])
return ISOTP_FRAME_TYPE.FIRST
elif rx_data[0] >> 4 == ISOTP_FRAME_TYPE.CONSECUTIVE:
assert not self.rx_done, "isotp - rx: consecutive frame with no active frame"
self.rx_idx += 1
assert self.rx_idx & 0xF == rx_data[0] & 0xF, "isotp - rx: invalid consecutive frame index"
rx_size = self.rx_len - len(self.rx_dat)
self.rx_dat += rx_data[1:1 + rx_size]
if self.rx_len == len(self.rx_dat):
self.rx_done = True
elif self.single_frame_mode:
# notify ECU to send next frame
self._can_client.send([self.flow_control_msg])
if self.debug:
print(f"ISO-TP: RX - consecutive frame - {hex(self._can_client.rx_addr)} idx={self.rx_idx} done={self.rx_done}")
return ISOTP_FRAME_TYPE.CONSECUTIVE
elif rx_data[0] >> 4 == ISOTP_FRAME_TYPE.FLOW:
assert not self.tx_done, "isotp - rx: flow control with no active frame"
assert rx_data[0] != 0x32, "isotp - rx: flow-control overflow/abort"
assert rx_data[0] == 0x30 or rx_data[0] == 0x31, "isotp - rx: flow-control transfer state indicator invalid"
if rx_data[0] == 0x30:
if self.debug:
print(f"ISO-TP: RX - flow control continue - {hex(self._can_client.tx_addr)}")
delay_ts = rx_data[2] & 0x7F
# scale is 1 milliseconds if first bit == 0, 100 micro seconds if first bit == 1
delay_div = 1000. if rx_data[2] & 0x80 == 0 else 10000.
delay_sec = delay_ts / delay_div
# first frame = 6 bytes, each consecutive frame = 7 bytes
num_bytes = self.max_len - 1
start = self.max_len - 2 + self.tx_idx * num_bytes
count = rx_data[1]
end = start + count * num_bytes if count > 0 else self.tx_len
tx_msgs = []
for i in range(start, end, num_bytes):
self.tx_idx += 1
# consecutive tx messages
msg = (bytes([0x20 | (self.tx_idx & 0xF)]) + self.tx_dat[i:i + num_bytes]).ljust(self.max_len, b"\x00")
tx_msgs.append(msg)
# send consecutive tx messages
self._can_client.send(tx_msgs, delay=delay_sec)
if end >= self.tx_len:
self.tx_done = True
if self.debug:
print(f"ISO-TP: TX - consecutive frame - {hex(self._can_client.tx_addr)} idx={self.tx_idx} done={self.tx_done}")
elif rx_data[0] == 0x31:
# wait (do nothing until next flow control message)
if self.debug:
print(f"ISO-TP: TX - flow control wait - {hex(self._can_client.tx_addr)}")
return ISOTP_FRAME_TYPE.FLOW
# 4-15 - reserved
else:
raise Exception(f"isotp - rx: invalid frame type: {rx_data[0] >> 4}")
FUNCTIONAL_ADDRS = [0x7DF, 0x18DB33F1]
def get_rx_addr_for_tx_addr(tx_addr, rx_offset=0x8):
if tx_addr in FUNCTIONAL_ADDRS:
return None
if tx_addr < 0xFFF8:
# pseudo-standard 11 bit response addr (add 8) works for most manufacturers
# allow override; some manufacturers use other offsets for non-OBD2 access
return tx_addr + rx_offset
if tx_addr > 0x10000000 and tx_addr < 0xFFFFFFFF:
# standard 29 bit response addr (flip last two bytes)
return (tx_addr & 0xFFFF0000) + (tx_addr << 8 & 0xFF00) + (tx_addr >> 8 & 0xFF)
raise ValueError(f"invalid tx_addr: {tx_addr}")
class UdsClient():
def __init__(self, panda, tx_addr: int, rx_addr: int | None = None, bus: int = 0, sub_addr: int | None = None, timeout: float = 1,
debug: bool = False, tx_timeout: float = 1, response_pending_timeout: float = 10):
self.bus = bus
self.tx_addr = tx_addr
self.rx_addr = rx_addr if rx_addr is not None else get_rx_addr_for_tx_addr(tx_addr)
self.sub_addr = sub_addr
self.timeout = timeout
self.debug = debug
can_send_with_timeout = partial(panda.can_send, timeout=int(tx_timeout*1000))
self._can_client = CanClient(can_send_with_timeout, panda.can_recv, self.tx_addr, self.rx_addr, self.bus, self.sub_addr, debug=self.debug)
self.response_pending_timeout = response_pending_timeout
# generic uds request
def _uds_request(self, service_type: SERVICE_TYPE, subfunction: int | None = None, data: bytes | None = None) -> bytes:
req = bytes([service_type])
if subfunction is not None:
req += bytes([subfunction])
if data is not None:
req += data
# send request, wait for response
max_len = 8 if self.sub_addr is None else 7
isotp_msg = IsoTpMessage(self._can_client, timeout=self.timeout, debug=self.debug, max_len=max_len)
isotp_msg.send(req)
response_pending = False
while True:
timeout = self.response_pending_timeout if response_pending else self.timeout
resp, _ = isotp_msg.recv(timeout)
if resp is None:
continue
response_pending = False
resp_sid = resp[0] if len(resp) > 0 else None
# negative response
if resp_sid == 0x7F:
service_id = resp[1] if len(resp) > 1 else -1
try:
service_desc = SERVICE_TYPE(service_id).name
except BaseException:
service_desc = 'NON_STANDARD_SERVICE'
error_code = resp[2] if len(resp) > 2 else -1
try:
error_desc = _negative_response_codes[error_code]
except BaseException:
error_desc = resp[3:].hex()
# wait for another message if response pending
if error_code == 0x78:
response_pending = True
if self.debug:
print("UDS-RX: response pending")
continue
raise NegativeResponseError(f'{service_desc} - {error_desc}', service_id, error_code)
# positive response
if service_type + 0x40 != resp_sid:
resp_sid_hex = hex(resp_sid) if resp_sid is not None else None
raise InvalidServiceIdError(f'invalid response service id: {resp_sid_hex}')
if subfunction is not None:
resp_sfn = resp[1] if len(resp) > 1 else None
if subfunction != resp_sfn:
resp_sfn_hex = hex(resp_sfn) if resp_sfn is not None else None
raise InvalidSubFunctionError(f'invalid response subfunction: {resp_sfn_hex}')
# return data (exclude service id and sub-function id)
return resp[(1 if subfunction is None else 2):]
# services
def diagnostic_session_control(self, session_type: SESSION_TYPE):
self._uds_request(SERVICE_TYPE.DIAGNOSTIC_SESSION_CONTROL, subfunction=session_type)
def ecu_reset(self, reset_type: RESET_TYPE):
resp = self._uds_request(SERVICE_TYPE.ECU_RESET, subfunction=reset_type)
power_down_time = None
if reset_type == RESET_TYPE.ENABLE_RAPID_POWER_SHUTDOWN:
power_down_time = resp[0]
return power_down_time
def security_access(self, access_type: ACCESS_TYPE, security_key: bytes = b'', data_record: bytes = b''):
request_seed = access_type % 2 != 0
if request_seed and len(security_key) != 0:
raise ValueError('security_key not allowed')
if not request_seed and len(security_key) == 0:
raise ValueError('security_key is missing')
if not request_seed and len(data_record) != 0:
raise ValueError('data_record not allowed')
data = security_key + data_record
resp = self._uds_request(SERVICE_TYPE.SECURITY_ACCESS, subfunction=access_type, data=data)
if request_seed:
security_seed = resp
return security_seed
def communication_control(self, control_type: CONTROL_TYPE, message_type: MESSAGE_TYPE):
data = bytes([message_type])
self._uds_request(SERVICE_TYPE.COMMUNICATION_CONTROL, subfunction=control_type, data=data)
def tester_present(self, ):
self._uds_request(SERVICE_TYPE.TESTER_PRESENT, subfunction=0x00)
def access_timing_parameter(self, timing_parameter_type: TIMING_PARAMETER_TYPE, parameter_values: bytes | None = None):
write_custom_values = timing_parameter_type == TIMING_PARAMETER_TYPE.SET_TO_GIVEN_VALUES
read_values = (timing_parameter_type == TIMING_PARAMETER_TYPE.READ_CURRENTLY_ACTIVE or
timing_parameter_type == TIMING_PARAMETER_TYPE.READ_EXTENDED_SET)
if not write_custom_values and parameter_values is not None:
raise ValueError('parameter_values not allowed')
if write_custom_values and parameter_values is None:
raise ValueError('parameter_values is missing')
resp = self._uds_request(SERVICE_TYPE.ACCESS_TIMING_PARAMETER, subfunction=timing_parameter_type, data=parameter_values)
if read_values:
# TODO: parse response into values?
parameter_values = resp
return parameter_values
def secured_data_transmission(self, data: bytes):
# TODO: split data into multiple input parameters?
resp = self._uds_request(SERVICE_TYPE.SECURED_DATA_TRANSMISSION, subfunction=None, data=data)
# TODO: parse response into multiple output values?
return resp
def control_dtc_setting(self, dtc_setting_type: DTC_SETTING_TYPE):
self._uds_request(SERVICE_TYPE.CONTROL_DTC_SETTING, subfunction=dtc_setting_type)
def response_on_event(self, response_event_type: RESPONSE_EVENT_TYPE, store_event: bool, window_time: int,
event_type_record: int, service_response_record: int):
if store_event:
response_event_type |= 0x20 # type: ignore
# TODO: split record parameters into arrays
data = bytes([window_time, event_type_record, service_response_record])
resp = self._uds_request(SERVICE_TYPE.RESPONSE_ON_EVENT, subfunction=response_event_type, data=data)
if response_event_type == RESPONSE_EVENT_TYPE.REPORT_ACTIVATED_EVENTS:
return {
"num_of_activated_events": resp[0],
"data": resp[1:], # TODO: parse the reset of response
}
return {
"num_of_identified_events": resp[0],
"event_window_time": resp[1],
"data": resp[2:], # TODO: parse the reset of response
}
def link_control(self, link_control_type: LINK_CONTROL_TYPE, baud_rate_type: BAUD_RATE_TYPE | None = None):
data: bytes | None
if link_control_type == LINK_CONTROL_TYPE.VERIFY_BAUDRATE_TRANSITION_WITH_FIXED_BAUDRATE:
# baud_rate_type = BAUD_RATE_TYPE
data = bytes([cast(int, baud_rate_type)])
elif link_control_type == LINK_CONTROL_TYPE.VERIFY_BAUDRATE_TRANSITION_WITH_SPECIFIC_BAUDRATE:
# baud_rate_type = custom value (3 bytes big-endian)
data = struct.pack('!I', baud_rate_type)[1:]
else:
data = None
self._uds_request(SERVICE_TYPE.LINK_CONTROL, subfunction=link_control_type, data=data)
def read_data_by_identifier(self, data_identifier_type: DATA_IDENTIFIER_TYPE):
# TODO: support list of identifiers
data = struct.pack('!H', data_identifier_type)
resp = self._uds_request(SERVICE_TYPE.READ_DATA_BY_IDENTIFIER, subfunction=None, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != data_identifier_type:
raise ValueError(f'invalid response data identifier: {hex(resp_id)} expected: {hex(data_identifier_type)}')
return resp[2:]
def read_memory_by_address(self, memory_address: int, memory_size: int, memory_address_bytes: int = 4, memory_size_bytes: int = 1):
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError(f'invalid memory_address_bytes: {memory_address_bytes}')
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError(f'invalid memory_size_bytes: {memory_size_bytes}')
data = bytes([memory_size_bytes << 4 | memory_address_bytes])
if memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError(f'invalid memory_address: {memory_address}')
data += struct.pack('!I', memory_address)[4 - memory_address_bytes:]
if memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError(f'invalid memory_size: {memory_size}')
data += struct.pack('!I', memory_size)[4 - memory_size_bytes:]
resp = self._uds_request(SERVICE_TYPE.READ_MEMORY_BY_ADDRESS, subfunction=None, data=data)
return resp
def read_scaling_data_by_identifier(self, data_identifier_type: DATA_IDENTIFIER_TYPE):
data = struct.pack('!H', data_identifier_type)
resp = self._uds_request(SERVICE_TYPE.READ_SCALING_DATA_BY_IDENTIFIER, subfunction=None, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != data_identifier_type:
raise ValueError(f'invalid response data identifier: {hex(resp_id)}')
return resp[2:] # TODO: parse the response
def read_data_by_periodic_identifier(self, transmission_mode_type: TRANSMISSION_MODE_TYPE, periodic_data_identifier: int):
# TODO: support list of identifiers
data = bytes([transmission_mode_type, periodic_data_identifier])
self._uds_request(SERVICE_TYPE.READ_DATA_BY_PERIODIC_IDENTIFIER, subfunction=None, data=data)
def dynamically_define_data_identifier(self, dynamic_definition_type: DYNAMIC_DEFINITION_TYPE, dynamic_data_identifier: int,
source_definitions: list[DynamicSourceDefinition], memory_address_bytes: int = 4, memory_size_bytes: int = 1):
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError(f'invalid memory_address_bytes: {memory_address_bytes}')
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError(f'invalid memory_size_bytes: {memory_size_bytes}')
data = struct.pack('!H', dynamic_data_identifier)
if dynamic_definition_type == DYNAMIC_DEFINITION_TYPE.DEFINE_BY_IDENTIFIER:
for s in source_definitions:
data += struct.pack('!H', s.data_identifier) + bytes([s.position, s.memory_size])
elif dynamic_definition_type == DYNAMIC_DEFINITION_TYPE.DEFINE_BY_MEMORY_ADDRESS:
data += bytes([memory_size_bytes << 4 | memory_address_bytes])
for s in source_definitions:
if s.memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError(f'invalid memory_address: {s.memory_address}')
data += struct.pack('!I', s.memory_address)[4 - memory_address_bytes:]
if s.memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError(f'invalid memory_size: {s.memory_size}')
data += struct.pack('!I', s.memory_size)[4 - memory_size_bytes:]
elif dynamic_definition_type == DYNAMIC_DEFINITION_TYPE.CLEAR_DYNAMICALLY_DEFINED_DATA_IDENTIFIER:
pass
else:
raise ValueError(f'invalid dynamic identifier type: {hex(dynamic_definition_type)}')
self._uds_request(SERVICE_TYPE.DYNAMICALLY_DEFINE_DATA_IDENTIFIER, subfunction=dynamic_definition_type, data=data)
def write_data_by_identifier(self, data_identifier_type: DATA_IDENTIFIER_TYPE, data_record: bytes):
data = struct.pack('!H', data_identifier_type) + data_record
resp = self._uds_request(SERVICE_TYPE.WRITE_DATA_BY_IDENTIFIER, subfunction=None, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != data_identifier_type:
raise ValueError(f'invalid response data identifier: {hex(resp_id)}')
def write_memory_by_address(self, memory_address: int, memory_size: int, data_record: bytes, memory_address_bytes: int = 4, memory_size_bytes: int = 1):
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError(f'invalid memory_address_bytes: {memory_address_bytes}')
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError(f'invalid memory_size_bytes: {memory_size_bytes}')
data = bytes([memory_size_bytes << 4 | memory_address_bytes])
if memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError(f'invalid memory_address: {memory_address}')
data += struct.pack('!I', memory_address)[4 - memory_address_bytes:]
if memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError(f'invalid memory_size: {memory_size}')
data += struct.pack('!I', memory_size)[4 - memory_size_bytes:]
data += data_record
self._uds_request(SERVICE_TYPE.WRITE_MEMORY_BY_ADDRESS, subfunction=0x00, data=data)
def clear_diagnostic_information(self, dtc_group_type: DTC_GROUP_TYPE):
data = struct.pack('!I', dtc_group_type)[1:] # 3 bytes
self._uds_request(SERVICE_TYPE.CLEAR_DIAGNOSTIC_INFORMATION, subfunction=None, data=data)
def read_dtc_information(self, dtc_report_type: DTC_REPORT_TYPE, dtc_status_mask_type: DTC_STATUS_MASK_TYPE = DTC_STATUS_MASK_TYPE.ALL,
dtc_severity_mask_type: DTC_SEVERITY_MASK_TYPE = DTC_SEVERITY_MASK_TYPE.ALL, dtc_mask_record: int = 0xFFFFFF,
dtc_snapshot_record_num: int = 0xFF, dtc_extended_record_num: int = 0xFF):
data = b''
# dtc_status_mask_type
if dtc_report_type == DTC_REPORT_TYPE.NUMBER_OF_DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.MIRROR_MEMORY_DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.NUMBER_OF_MIRROR_MEMORY_DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.NUMBER_OF_EMISSIONS_RELATED_OBD_DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.EMISSIONS_RELATED_OBD_DTC_BY_STATUS_MASK:
data += bytes([dtc_status_mask_type])
# dtc_mask_record
if dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_IDENTIFICATION or \
dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.MIRROR_MEMORY_DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.SEVERITY_INFORMATION_OF_DTC:
data += struct.pack('!I', dtc_mask_record)[1:] # 3 bytes
# dtc_snapshot_record_num
if dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_IDENTIFICATION or \
dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_RECORD_BY_RECORD_NUMBER:
data += bytes([dtc_snapshot_record_num])
# dtc_extended_record_num
if dtc_report_type == DTC_REPORT_TYPE.DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.MIRROR_MEMORY_DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER:
data += bytes([dtc_extended_record_num])
# dtc_severity_mask_type
if dtc_report_type == DTC_REPORT_TYPE.NUMBER_OF_DTC_BY_SEVERITY_MASK_RECORD or \
dtc_report_type == DTC_REPORT_TYPE.DTC_BY_SEVERITY_MASK_RECORD:
data += bytes([dtc_severity_mask_type, dtc_status_mask_type])
resp = self._uds_request(SERVICE_TYPE.READ_DTC_INFORMATION, subfunction=dtc_report_type, data=data)
# TODO: parse response
return resp
def input_output_control_by_identifier(self, data_identifier_type: DATA_IDENTIFIER_TYPE, control_parameter_type: CONTROL_PARAMETER_TYPE,
control_option_record: bytes = b'', control_enable_mask_record: bytes = b''):
data = struct.pack('!H', data_identifier_type) + bytes([control_parameter_type]) + control_option_record + control_enable_mask_record
resp = self._uds_request(SERVICE_TYPE.INPUT_OUTPUT_CONTROL_BY_IDENTIFIER, subfunction=None, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != data_identifier_type:
raise ValueError(f'invalid response data identifier: {hex(resp_id)}')
return resp[2:]
def routine_control(self, routine_control_type: ROUTINE_CONTROL_TYPE, routine_identifier_type: ROUTINE_IDENTIFIER_TYPE, routine_option_record: bytes = b''):
data = struct.pack('!H', routine_identifier_type) + routine_option_record
resp = self._uds_request(SERVICE_TYPE.ROUTINE_CONTROL, subfunction=routine_control_type, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != routine_identifier_type:
raise ValueError(f'invalid response routine identifier: {hex(resp_id)}')
return resp[2:]
def request_download(self, memory_address: int, memory_size: int, memory_address_bytes: int = 4, memory_size_bytes: int = 4, data_format: int = 0x00):
data = bytes([data_format])
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError(f'invalid memory_address_bytes: {memory_address_bytes}')
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError(f'invalid memory_size_bytes: {memory_size_bytes}')
data += bytes([memory_size_bytes << 4 | memory_address_bytes])
if memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError(f'invalid memory_address: {memory_address}')
data += struct.pack('!I', memory_address)[4 - memory_address_bytes:]
if memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError(f'invalid memory_size: {memory_size}')
data += struct.pack('!I', memory_size)[4 - memory_size_bytes:]
resp = self._uds_request(SERVICE_TYPE.REQUEST_DOWNLOAD, subfunction=None, data=data)
max_num_bytes_len = resp[0] >> 4 if len(resp) > 0 else 0
if max_num_bytes_len >= 1 and max_num_bytes_len <= 4:
max_num_bytes = struct.unpack('!I', (b"\x00" * (4 - max_num_bytes_len)) + resp[1:max_num_bytes_len + 1])[0]
else:
raise ValueError(f'invalid max_num_bytes_len: {max_num_bytes_len}')
return max_num_bytes # max number of bytes per transfer data request
def request_upload(self, memory_address: int, memory_size: int, memory_address_bytes: int = 4, memory_size_bytes: int = 4, data_format: int = 0x00):
data = bytes([data_format])
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError(f'invalid memory_address_bytes: {memory_address_bytes}')
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError(f'invalid memory_size_bytes: {memory_size_bytes}')
data += bytes([memory_size_bytes << 4 | memory_address_bytes])
if memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError(f'invalid memory_address: {memory_address}')
data += struct.pack('!I', memory_address)[4 - memory_address_bytes:]
if memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError(f'invalid memory_size: {memory_size}')
data += struct.pack('!I', memory_size)[4 - memory_size_bytes:]
resp = self._uds_request(SERVICE_TYPE.REQUEST_UPLOAD, subfunction=None, data=data)
max_num_bytes_len = resp[0] >> 4 if len(resp) > 0 else 0
if max_num_bytes_len >= 1 and max_num_bytes_len <= 4:
max_num_bytes = struct.unpack('!I', (b"\x00" * (4 - max_num_bytes_len)) + resp[1:max_num_bytes_len + 1])[0]
else:
raise ValueError(f'invalid max_num_bytes_len: {max_num_bytes_len}')
return max_num_bytes # max number of bytes per transfer data request
def transfer_data(self, block_sequence_count: int, data: bytes = b''):
data = bytes([block_sequence_count]) + data
resp = self._uds_request(SERVICE_TYPE.TRANSFER_DATA, subfunction=None, data=data)
resp_id = resp[0] if len(resp) > 0 else None
if resp_id != block_sequence_count:
raise ValueError(f'invalid block_sequence_count: {resp_id}')
return resp[1:]
def request_transfer_exit(self):
self._uds_request(SERVICE_TYPE.REQUEST_TRANSFER_EXIT, subfunction=None)

11
panda/python/utils.py Normal file
View File

@@ -0,0 +1,11 @@
import os
import logging
# set up logging
LOGLEVEL = os.environ.get('LOGLEVEL', 'INFO').upper()
logger = logging.getLogger('panda')
logger.setLevel(LOGLEVEL)
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(message)s'))
logger.addHandler(handler)

View File

@@ -1,258 +0,0 @@
import sys
import time
import struct
from enum import IntEnum
class COMMAND_CODE(IntEnum):
CONNECT = 0xFF
DISCONNECT = 0xFE
GET_STATUS = 0xFD
SYNCH = 0xFC
GET_COMM_MODE_INFO = 0xFB
GET_ID = 0xFA
SET_REQUEST = 0xF9
GET_SEED = 0xF8
UNLOCK = 0xF7
SET_MTA = 0xF6
UPLOAD = 0xF5
SHORT_UPLOAD = 0xF4
BUILD_CHECKSUM = 0xF3
TRANSPORT_LAYER_CMD = 0xF2
USER_CMD = 0xF1
DOWNLOAD = 0xF0
DOWNLOAD_NEXT = 0xEF
DOWNLOAD_MAX = 0xEE
SHORT_DOWNLOAD = 0xED
MODIFY_BITS = 0xEC
SET_CAL_PAGE = 0xEB
GET_CAL_PAGE = 0xEA
GET_PAG_PROCESSOR_INFO = 0xE9
GET_SEGMENT_INFO = 0xE8
GET_PAGE_INFO = 0xE7
SET_SEGMENT_MODE = 0xE6
GET_SEGMENT_MODE = 0xE5
COPY_CAL_PAGE = 0xE4
CLEAR_DAQ_LIST = 0xE3
SET_DAQ_PTR = 0xE2
WRITE_DAQ = 0xE1
SET_DAQ_LIST_MODE = 0xE0
GET_DAQ_LIST_MODE = 0xDF
START_STOP_DAQ_LIST = 0xDE
START_STOP_SYNCH = 0xDD
GET_DAQ_CLOCK = 0xDC
READ_DAQ = 0xDB
GET_DAQ_PROCESSOR_INFO = 0xDA
GET_DAQ_RESOLUTION_INFO = 0xD9
GET_DAQ_LIST_INFO = 0xD8
GET_DAQ_EVENT_INFO = 0xD7
FREE_DAQ = 0xD6
ALLOC_DAQ = 0xD5
ALLOC_ODT = 0xD4
ALLOC_ODT_ENTRY = 0xD3
PROGRAM_START = 0xD2
PROGRAM_CLEAR = 0xD1
PROGRAM = 0xD0
PROGRAM_RESET = 0xCF
GET_PGM_PROCESSOR_INFO = 0xCE
GET_SECTOR_INFO = 0xCD
PROGRAM_PREPARE = 0xCC
PROGRAM_FORMAT = 0xCB
PROGRAM_NEXT = 0xCA
PROGRAM_MAX = 0xC9
PROGRAM_VERIFY = 0xC8
ERROR_CODES = {
0x00: "Command processor synchronization",
0x10: "Command was not executed",
0x11: "Command rejected because DAQ is running",
0x12: "Command rejected because PGM is running",
0x20: "Unknown command or not implemented optional command",
0x21: "Command syntax invalid",
0x22: "Command syntax valid but command parameter(s) out of range",
0x23: "The memory location is write protected",
0x24: "The memory location is not accessible",
0x25: "Access denied, Seed & Key is required",
0x26: "Selected page not available",
0x27: "Selected page mode not available",
0x28: "Selected segment not valid",
0x29: "Sequence error",
0x2A: "DAQ configuration not valid",
0x30: "Memory overflow error",
0x31: "Generic error",
0x32: "The slave internal program verify routine detects an error",
}
class CONNECT_MODE(IntEnum):
NORMAL = 0x00,
USER_DEFINED = 0x01,
class GET_ID_REQUEST_TYPE(IntEnum):
ASCII = 0x00,
ASAM_MC2_FILE = 0x01,
ASAM_MC2_PATH = 0x02,
ASAM_MC2_URL = 0x03,
ASAM_MC2_UPLOAD = 0x04,
# 128-255 user defined
class CommandTimeoutError(Exception):
pass
class CommandCounterError(Exception):
pass
class CommandResponseError(Exception):
def __init__(self, message, return_code):
super().__init__()
self.message = message
self.return_code = return_code
def __str__(self):
return self.message
class XcpClient():
def __init__(self, panda, tx_addr: int, rx_addr: int, bus: int=0, timeout: float=0.1, debug=False, pad=True):
self.tx_addr = tx_addr
self.rx_addr = rx_addr
self.can_bus = bus
self.timeout = timeout
self.debug = debug
self._panda = panda
self._byte_order = ">"
self._max_cto = 8
self._max_dto = 8
self.pad = pad
def _send_cto(self, cmd: int, dat: bytes = b"") -> None:
tx_data = (bytes([cmd]) + dat)
# Some ECUs don't respond if the packets are not padded to 8 bytes
if self.pad:
tx_data = tx_data.ljust(8, b"\x00")
if self.debug:
print("CAN-CLEAR: TX")
self._panda.can_clear(self.can_bus)
if self.debug:
print("CAN-CLEAR: RX")
self._panda.can_clear(0xFFFF)
if self.debug:
print(f"CAN-TX: {hex(self.tx_addr)} - 0x{bytes.hex(tx_data)}")
self._panda.can_send(self.tx_addr, tx_data, self.can_bus)
def _recv_dto(self, timeout: float) -> bytes:
start_time = time.time()
while time.time() - start_time < timeout:
msgs = self._panda.can_recv() or []
if len(msgs) >= 256:
print("CAN RX buffer overflow!!!", file=sys.stderr)
for rx_addr, _, rx_data, rx_bus in msgs:
if rx_bus == self.can_bus and rx_addr == self.rx_addr:
rx_data = bytes(rx_data) # convert bytearray to bytes
if self.debug:
print(f"CAN-RX: {hex(rx_addr)} - 0x{bytes.hex(rx_data)}")
pid = rx_data[0]
if pid == 0xFE:
err = rx_data[1]
err_desc = ERROR_CODES.get(err, "unknown error")
dat = rx_data[2:]
raise CommandResponseError(f"{hex(err)} - {err_desc} {dat}", err)
return bytes(rx_data[1:])
time.sleep(0.001)
raise CommandTimeoutError("timeout waiting for response")
# commands
def connect(self, connect_mode: CONNECT_MODE=CONNECT_MODE.NORMAL) -> dict:
self._send_cto(COMMAND_CODE.CONNECT, bytes([connect_mode]))
resp = self._recv_dto(self.timeout)
assert len(resp) == 7, f"incorrect data length: {len(resp)}"
self._byte_order = ">" if resp[1] & 0x01 else "<"
self._slave_block_mode = resp[1] & 0x40 != 0
self._max_cto = resp[2]
self._max_dto = struct.unpack(f"{self._byte_order}H", resp[3:5])[0]
return {
"cal_support": resp[0] & 0x01 != 0,
"daq_support": resp[0] & 0x04 != 0,
"stim_support": resp[0] & 0x08 != 0,
"pgm_support": resp[0] & 0x10 != 0,
"byte_order": self._byte_order,
"address_granularity": 2**((resp[1] & 0x06) >> 1),
"slave_block_mode": self._slave_block_mode,
"optional": resp[1] & 0x80 != 0,
"max_cto": self._max_cto,
"max_dto": self._max_dto,
"protocol_version": resp[5],
"transport_version": resp[6],
}
def disconnect(self) -> None:
self._send_cto(COMMAND_CODE.DISCONNECT)
resp = self._recv_dto(self.timeout)
assert len(resp) == 0, f"incorrect data length: {len(resp)}"
def get_id(self, req_id_type: GET_ID_REQUEST_TYPE = GET_ID_REQUEST_TYPE.ASCII) -> dict:
if req_id_type > 255:
raise ValueError("request id type must be less than 255")
self._send_cto(COMMAND_CODE.GET_ID, bytes([req_id_type]))
resp = self._recv_dto(self.timeout)
return {
# mode = 0 means MTA was set
# mode = 1 means data is at end (only CAN-FD has space for this)
"mode": resp[0],
"length": struct.unpack(f"{self._byte_order}I", resp[3:7])[0],
"identifier": resp[7:] if self._max_cto > 8 else None
}
def get_seed(self, mode: int = 0) -> bytes:
if mode > 255:
raise ValueError("mode must be less than 255")
self._send_cto(COMMAND_CODE.GET_SEED, bytes([0, mode]))
# TODO: add support for longer seeds spread over multiple blocks
ret = self._recv_dto(self.timeout)
length = ret[0]
return ret[1:length+1]
def unlock(self, key: bytes) -> bytes:
# TODO: add support for longer keys spread over multiple blocks
self._send_cto(COMMAND_CODE.UNLOCK, bytes([len(key)]) + key)
return self._recv_dto(self.timeout)
def set_mta(self, addr: int, addr_ext: int = 0) -> bytes:
if addr_ext > 255:
raise ValueError("address extension must be less than 256")
# TODO: this looks broken (missing addr extension)
self._send_cto(COMMAND_CODE.SET_MTA, bytes([0x00, 0x00, addr_ext]) + struct.pack(f"{self._byte_order}I", addr))
return self._recv_dto(self.timeout)
def upload(self, size: int) -> bytes:
if size > 255:
raise ValueError("size must be less than 256")
if not self._slave_block_mode and size > self._max_dto - 1:
raise ValueError("block mode not supported")
self._send_cto(COMMAND_CODE.UPLOAD, bytes([size]))
resp = b""
while len(resp) < size:
resp += self._recv_dto(self.timeout)[:size - len(resp) + 1]
return resp[:size] # trim off bytes with undefined values
def short_upload(self, size: int, addr_ext: int, addr: int) -> bytes:
if size > 6:
raise ValueError("size must be less than 7")
if addr_ext > 255:
raise ValueError("address extension must be less than 256")
self._send_cto(COMMAND_CODE.SHORT_UPLOAD, bytes([size, 0x00, addr_ext]) + struct.pack(f"{self._byte_order}I", addr))
return self._recv_dto(self.timeout)[:size] # trim off bytes with undefined values
def download(self, data: bytes) -> bytes:
size = len(data)
if size > 255:
raise ValueError("size must be less than 256")
if not self._slave_block_mode and size > self._max_dto - 2:
raise ValueError("block mode not supported")
self._send_cto(COMMAND_CODE.DOWNLOAD, bytes([size]) + data)
return self._recv_dto(self.timeout)[:size]