Files
carrotpilot/selfdrive/controls/radard.py
2025-08-12 14:17:39 +09:00

643 lines
22 KiB
Python

#!/usr/bin/env python3
import math
import numpy as np
from collections import deque
from typing import Any
import capnp
from cereal import messaging, log, car
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.params import Params
from openpilot.common.realtime import DT_MDL, Priority, config_realtime_process
from openpilot.common.swaglog import cloudlog
from openpilot.common.simple_kalman import KF1D
# Default lead acceleration decay set to 50% at 1s
_LEAD_ACCEL_TAU = 1.5
# radar tracks
SPEED, ACCEL = 0, 1 # Kalman filter states enum
# stationary qualification parameters
V_EGO_STATIONARY = 4. # no stationary object flag below this speed
RADAR_TO_CENTER = 2.7 # (deprecated) RADAR is ~ 2.7m ahead from center of car
RADAR_TO_CAMERA = 1.52 # RADAR is ~ 1.5m ahead from center of mesh frame
class Track:
def __init__(self, identifier: int):
self.identifier = identifier
self.cnt = 0
self.aLeadTau = FirstOrderFilter(_LEAD_ACCEL_TAU, 0.45, DT_MDL)
self.is_stopped_car_count = 0
self.selected_count = 0
def update(self, md, pt, ready, radar_reaction_factor):
#pt_yRel = -leads_v3[0].y[0] if track_id in [0, 1] and pt.yRel == 0 and self.ready and leads_v3[0].prob > 0.5 else pt.yRel
self.dRel = pt.dRel
self.yRel = pt.yRel
self.vRel = pt.vRel
self.vLead = self.vLeadK = pt.vLead
self.aLead = self.aLeadK = pt.aLead
self.jLead = pt.jLead
self.yvLead = pt.yvRel
self.measured = pt.measured # measured or estimate
if ready:
self.dPath = self.yRel + np.interp(self.dRel, md.position.x, md.position.y)
if self.cnt == 0:
self.yRel_filtered = self.yRel
else:
self.yRel_filtered = self.yRel_filtered * 0.98 + self.yRel * 0.02
a_lead_threshold = 0.5 * radar_reaction_factor
if abs(self.aLead) < a_lead_threshold and abs(self.jLead) < 0.5:
self.aLeadTau.x = _LEAD_ACCEL_TAU * radar_reaction_factor
else:
self.aLeadTau.update(0.0)
self.cnt += 1
def get_RadarState(self, model_prob: float = 0.0, vision_y_rel = 0.0):
yRel = vision_y_rel if vision_y_rel != 0.0 else float(self.yRel)
return {
"dRel": float(self.dRel),
"yRel": float(self.yRel) if vision_y_rel == 0.0 else vision_y_rel,
"dPath" : float(self.dPath),
"vRel": float(self.vRel),
"vLead": float(self.vLead),
"vLeadK": float(self.vLeadK),
"aLead": float(self.aLead),
"aLeadK": float(self.aLeadK),
"aLeadTau": float(self.aLeadTau.x),
"jLead": float(self.jLead),
"vLat": float(self.yvLead),
"status": True,
"fcw": self.is_potential_fcw(model_prob),
"modelProb": model_prob,
"radar": True,
"radarTrackId": self.identifier,
}
def potential_low_speed_lead(self, v_ego: float):
# stop for stuff in front of you and low speed, even without model confirmation
# Radar points closer than 0.75, are almost always glitches on toyota radars
return abs(self.yRel) < 1.0 and (v_ego < V_EGO_STATIONARY) and (0.75 < self.dRel < 25)
def is_potential_fcw(self, model_prob: float):
return model_prob > .9
def __str__(self):
ret = f"x: {self.dRel:4.1f} y: {self.yRel:4.1f} v: {self.vRel:4.1f} a: {self.aLeadK:4.1f}"
return ret
def laplacian_pdf(x: float, mu: float, b: float):
diff = abs(x - mu) / max(b, 1e-4)
return 0.0 if diff > 50.0 else math.exp(-diff)
def match_vision_to_track(v_ego: float, lead: capnp._DynamicStructReader, tracks: dict[int, Track], radar_lat_factor = 0.0):
offset_vision_dist = lead.x[0] - RADAR_TO_CAMERA
#vel_tolerance = 25.0 if lead.prob > 0.99 else 10.0
max_offset_vision_dist = max(offset_vision_dist * 0.35, 5.0)
max_offset_vision_vel = max(lead.v[0] * np.interp(lead.prob, [0.8, 0.98], [0.3, 0.5]), 5.0) # 확률이 낮으면 속도오차를 줄임.
def prob(c):
#if abs(offset_vision_dist - c.dRel) > max_offset_vision_dist:
# return -1e6
#if abs(lead.v[0] - c.vLead) > max_offset_vision_vel:
# return -1e6
#if abs(c.yRel + c.yvLead * radar_lat_factor + lead.y[0]) > 3.0: # lead.y[0]는 반대..
# return -1e6
prob_d = laplacian_pdf(c.dRel, offset_vision_dist, lead.xStd[0])
prob_y = laplacian_pdf(c.yRel + c.yvLead * radar_lat_factor, -lead.y[0], lead.yStd[0])
prob_v = laplacian_pdf(c.vLead, lead.v[0], lead.vStd[0])
weight_v = np.interp(c.vLead, [0, 10], [0.3, 1])
return prob_d * prob_y * prob_v * weight_v
#track = max(tracks.values(), key=prob, default=None)
#return track if track and prob(track) > -1e6 else None
best_track = None
best_score = -1e6
for c in tracks.values():
score = prob(c)
if score > best_score:
best_score = score
best_track = c
if best_track is not None and offset_vision_dist - best_track.dRel > max_offset_vision_dist:
best_track = None
#if best_track is not None and lead.v[0] - best_track.vLead > max_offset_vision_vel:
# best_track = None
if best_track is not None and abs(best_track.yRel + best_track.yvLead * radar_lat_factor + lead.y[0]) > 3.0: # lead.y[0]는 반대..
best_track = None
if best_track is not None:
if lead.v[0] - best_track.vLead > max_offset_vision_vel:
best_track.is_stopped_car_count += 1
# 직전에 사용되었던것이라면 재사용, 2초간 유지된다면 정지차로 간주.
if best_track.selected_count < 1 and best_track.is_stopped_car_count < int(2.0/DT_MDL):
best_track = None
if best_track is not None:
best_track.selected_count += 1
for c in tracks.values():
if c is not best_track:
c.selected_count = 0
return best_track
def get_RadarState_from_vision(md, lead_msg: capnp._DynamicStructReader, v_ego: float, model_v_ego: float):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
dRel = float(lead_msg.x[0] - RADAR_TO_CAMERA)
yRel = float(-lead_msg.y[0])
dPath = yRel + np.interp(dRel, md.position.x, md.position.y)
return {
"dRel": float(dRel),
"yRel": yRel,
"dPath" : float(dPath),
"vRel": float(lead_v_rel_pred),
"vLead": float(v_ego + lead_v_rel_pred),
"vLeadK": float(v_ego + lead_v_rel_pred),
"aLead": float(lead_msg.a[0]),
"aLeadK": float(lead_msg.a[0]),
"aLeadTau": 0.3,
"jLead": 0.0,
"vLat" : 0.0,
"fcw": False,
"modelProb": float(lead_msg.prob),
"status": True,
"radar": False,
"radarTrackId": -1,
}
def get_lead_side(v_ego, tracks, md, lane_width, model_v_ego, radar_lat_factor = 0.0):
lead_msg = md.leadsV3[0]
leadCenter = {'status': False}
leadLeft = {'status': False}
leadRight = {'status': False}
leadCutIn = {'status': False}
## SCC레이더는 일단 보관하고 리스트에서 삭제...
track_scc = tracks.get(0)
#if track_scc is not None:
# del tracks[0]
#if len(tracks) == 0:
# return [[],[],[],leadLeft,leadRight]
if md is not None and len(md.position.x) == 33: #ModelConstants.IDX_N:
md_y = md.position.y
md_x = md.position.x
else:
return [[],[],[],leadCenter,leadLeft,leadRight,leadCutIn]
leads_center = {}
leads_left = {}
leads_right = {}
next_lane_y = 1e6 #lane_width / 2 + lane_width * 0.8
for c in tracks.values():
# d_y : path_y - traks_y 의 diff값
# yRel값은 왼쪽이 +값, lead.y[0]값은 왼쪽이 -값
d_y = c.yRel_filtered + np.interp(c.dRel, md_x, md_y) + c.yvLead * radar_lat_factor
if abs(d_y) < lane_width / 2 * 0.8:
if c.cnt > 6:
ld = c.get_RadarState(lead_msg.prob, float(-lead_msg.y[0]))
leads_center[c.dRel] = ld
elif -next_lane_y < d_y < 0:
ld = c.get_RadarState(0, 0)
leads_right[c.dRel] = ld
elif 0 < d_y < next_lane_y:
ld = c.get_RadarState(0, 0)
leads_left[c.dRel] = ld
if abs(d_y) < 2.3 and 4 < c.dRel < 20.0 and c.vLead > 4.0:
if leadCutIn['status'] is False or c.dRel < leadCutIn['dRel']:
leadCutIn = c.get_RadarState(lead_msg.prob)
if False: #lead_msg.prob > 0.5: # center에 비젼데이터 안넣음..
ld = get_RadarState_from_vision(md, lead_msg, v_ego, model_v_ego)
leads_center[ld['dRel']] = ld
#ll,lr = [[l[k] for k in sorted(list(l.keys()))] for l in [leads_left,leads_right]]
#lc = sorted(leads_center.values(), key=lambda c:c["dRel"])
ll = list(leads_left.values())
lr = list(leads_right.values())
lc = list(leads_center.values())
#if leads_center:
# dRel_min = min(leads_center.keys())
# lc = [leads_center[dRel_min]]
#else:
# lc = {}
leadLeft = min((lead for dRel, lead in leads_left.items() if lead['dRel'] > 5.0 and abs(lead['dPath']) < 3.5), key=lambda x: x['dRel'], default=leadLeft)
leadRight = min((lead for dRel, lead in leads_right.items() if lead['dRel'] > 5.0 and abs(lead['dPath']) < 3.5), key=lambda x: x['dRel'], default=leadRight)
leadCenter = min((lead for dRel, lead in leads_center.items() if lead['vLead'] > 5 and lead['radar']), key=lambda x: x['dRel'], default=leadCenter)
#filtered_leads_left = {dRel: lead for dRel, lead in leads_left.items() if lead['dRel'] > 5.0}
#if filtered_leads_left:
# dRel_min = min(filtered_leads_left.keys())
# leadLeft = filtered_leads_left[dRel_min]
#filtered_leads_right = {dRel: lead for dRel, lead in leads_right.items() if lead['dRel'] > 5.0}
#if filtered_leads_right:
# dRel_min = min(filtered_leads_right.keys())
# leadRight = filtered_leads_right[dRel_min]
return [ll, lc, lr, leadCenter, leadLeft, leadRight, leadCutIn]
def get_lead(v_ego: float, ready: bool, tracks: dict[int, Track], lead_msg: capnp._DynamicStructReader,
model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]:
# Determine leads, this is where the essential logic happens
if len(tracks) > 0 and ready and lead_msg.prob > .5:
track = match_vision_to_track(v_ego, lead_msg, tracks)
else:
track = None
lead_dict = {'status': False}
if track is not None:
lead_dict = track.get_RadarState(lead_msg.prob)
elif (track is None) and ready and (lead_msg.prob > .5):
lead_dict = get_RadarState_from_vision(lead_msg, v_ego, model_v_ego)
if low_speed_override:
low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
if len(low_speed_tracks) > 0:
closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
# Only choose new track if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
lead_dict = closest_track.get_RadarState()
return lead_dict
class VisionTrack:
def __init__(self, radar_ts):
self.radar_ts = radar_ts
self.dRel = 0.0
self.vRel = 0.0
self.yRel = 0.0
self.vLead = 0.0
self.aLead = 0.0
self.vLeadK = 0.0
self.aLeadK = 0.0
self.aLeadTau = _LEAD_ACCEL_TAU
self.prob = 0.0
self.status = False
self.dRel_last = 0.0
self.vLead_last = 0.0
self.alpha = 0.02
self.alpha_a = 0.02
self.vLat = 0.0
self.v_ego = 0.0
self.cnt = 0
self.dPath = 0.0
def get_lead(self, md):
#aLeadK = 0.0 if self.mixRadarInfo in [3] else clip(self.aLeadK, self.aLead - 1.0, self.aLead + 1.0)
return {
"dRel": self.dRel,
"yRel": self.yRel,
#"dPath": self.dPath,
"vRel": self.vRel,
"vLead": self.vLead,
"vLeadK": self.vLeadK, ## TODO: 아직 vLeadK는 엉망인듯...
"aLead": self.aLead,
"aLeadK": self.aLeadK,
"aLeadTau": self.aLeadTau,
"jLead": 0.0,
"vLat": 0.0,
"fcw": False,
"modelProb": self.prob,
"status": self.status,
"radar": False,
"radarTrackId": -1,
#"aLead": self.aLead,
#"vLat": self.vLat,
}
def reset(self):
self.status = False
self.aLeadTau = _LEAD_ACCEL_TAU
self.vRel = 0.0
self.vLead = self.vLeadK = self.v_ego
self.aLead = self.aLeadK = 0.0
self.vLat = 0.0
def update(self, lead_msg, model_v_ego, v_ego, md):
lead_v_rel_pred = lead_msg.v[0] - model_v_ego
self.prob = lead_msg.prob
self.v_ego = v_ego
if self.prob > .5:
dRel = float(lead_msg.x[0]) - RADAR_TO_CAMERA
if abs(self.dRel - dRel) > 5.0:
self.cnt = 0
self.dRel = dRel
self.yRel = float(-lead_msg.y[0])
dPath = self.yRel + np.interp(self.dRel, md.position.x, md.position.y)
a_lead_vision = lead_msg.a[0]
if self.cnt < 20 or self.prob < 0.97: # 레이더측정시 cnt는 0, 레이더사라지고 1초간 비젼데이터 그대로 사용
self.vRel = lead_v_rel_pred
self.vLead = float(v_ego + lead_v_rel_pred)
self.aLead = a_lead_vision
self.vLat = 0.0
else:
v_rel = (self.dRel - self.dRel_last) / self.radar_ts
v_rel = self.vRel * (1. - self.alpha) + v_rel * self.alpha
#self.vRel = lead_v_rel_pred if self.mixRadarInfo == 3 else (lead_v_rel_pred + self.vRel) / 2
model_weight = np.interp(self.prob, [0.97, 1.0], [0.4, 0.0]) # prob가 높으면 v_rel(dRel미분값)에 가중치를 줌.
self.vRel = float(lead_v_rel_pred * model_weight + v_rel * (1. - model_weight))
#self.vRel = (lead_v_rel_pred + v_rel) / 2
self.vLead = float(v_ego + self.vRel)
a_lead = (self.vLead - self.vLead_last) / self.radar_ts * 0.2 #0.5 -> 0.2 vel 미분적용을 줄임.
self.aLead = self.aLead * (1. - self.alpha_a) + a_lead * self.alpha_a
if abs(a_lead_vision) > abs(self.aLead): # or self.mixRadarInfo == 3:
self.aLead = a_lead_vision
vLat_alpha = 0.002
self.vLat = self.vLat * (1. - vLat_alpha) + (dPath - self.dPath) / self.radar_ts * vLat_alpha
self.dPath = dPath
self.vLeadK= self.vLead
self.aLeadK = self.aLead
self.status = True
self.cnt += 1
else:
self.reset()
self.cnt = 0
self.dPath = self.yRel + np.interp(v_ego ** 2 / (2 * 2.5), md.position.x, md.position.y)
self.dRel_last = self.dRel
self.vLead_last = self.vLead
# Learn if constant acceleration
#aLeadTauValue = self.aLeadTauPos if self.aLead > self.aLeadTauThreshold else self.aLeadTauNeg
if abs(self.aLead) < 0.3: #self.aLeadTauThreshold:
self.aLeadTau = 0.2 #aLeadTauValue
else:
#self.aLeadTau = min(self.aLeadTau * 0.9, aLeadTauValue)
self.aLeadTau *= 0.9
class RadarD:
def __init__(self, delay: float = 0.0):
self.current_time = 0.0
self.tracks: dict[int, Track] = {}
self.v_ego = 0.0
print("###RadarD.. : delay = ", delay, int(round(delay / DT_MDL))+1)
self.v_ego_hist = deque([0.0], maxlen=int(round(delay / DT_MDL))+1)
self.last_v_ego_frame = -1
self.radar_state: capnp._DynamicStructBuilder | None = None
self.radar_state_valid = False
self.ready = False
self.vision_tracks = [VisionTrack(DT_MDL), VisionTrack(DT_MDL)]
self.params = Params()
self.enable_radar_tracks = self.params.get_int("EnableRadarTracks")
self.enable_corner_radar = self.params.get_int("EnableCornerRadar")
self.radar_lat_factor = 0.0
self.radar_detected = False
def update(self, sm: messaging.SubMaster, rr: car.RadarData):
self.ready = sm.seen['modelV2']
self.current_time = 1e-9*max(sm.logMonoTime.values())
self.enable_radar_tracks = self.params.get_int("EnableRadarTracks")
self.enable_corner_radar = self.params.get_int("EnableCornerRadar")
self.radar_lat_factor = self.params.get_float("RadarLatFactor") * 0.01
self.radar_reaction_factor = self.params.get_float("RadarReactionFactor") * 0.01
self.detect_cut_in = self.radar_lat_factor > 0
leads_v3 = sm['modelV2'].leadsV3
if sm.recv_frame['carState'] != self.last_v_ego_frame:
self.v_ego = sm['carState'].vEgo
self.v_ego_hist.append(self.v_ego)
self.last_v_ego_frame = sm.recv_frame['carState']
valid_ids = set()
for pt in rr.points:
track_id = pt.trackId
valid_ids.add(track_id)
if track_id not in self.tracks:
self.tracks[track_id] = Track(track_id)
self.tracks[track_id].update(sm['modelV2'], pt, self.ready, self.radar_reaction_factor)
for tid in list(self.tracks.keys()):
if tid not in valid_ids:
self.tracks.pop(tid)
# *** publish radarState ***
self.radar_state_valid = sm.all_checks()
self.radar_state = log.RadarState.new_message()
model_updated = False if self.radar_state.mdMonoTime == sm.logMonoTime['modelV2'] else True
self.radar_state.mdMonoTime = sm.logMonoTime['modelV2']
self.radar_state.radarErrors = rr.errors
self.radar_state.carStateMonoTime = sm.logMonoTime['carState']
if len(sm['modelV2'].velocity.x):
model_v_ego = sm['modelV2'].velocity.x[0]
else:
model_v_ego = self.v_ego
if len(leads_v3) > 1:
if model_updated:
if self.radar_detected:
self.vision_tracks[0].cnt = 0
self.vision_tracks[1].cnt = 0
self.vision_tracks[0].update(leads_v3[0], model_v_ego, self.v_ego, sm['modelV2'])
self.vision_tracks[1].update(leads_v3[1], model_v_ego, self.v_ego, sm['modelV2'])
self.radar_state.leadOne, self.radar_detected = self.get_lead(sm['carState'], sm['modelV2'], self.tracks, 0, leads_v3[0], model_v_ego, low_speed_override=False)
self.radar_state.leadTwo, _ = self.get_lead(sm['carState'], sm['modelV2'], self.tracks, 1, leads_v3[1], model_v_ego, low_speed_override=False)
ll, lc, lr, leadCenter, self.radar_state.leadLeft, self.radar_state.leadRight, leadCutIn = get_lead_side(self.v_ego, self.tracks, sm['modelV2'], 3.2, model_v_ego, self.radar_lat_factor)
if leadCutIn is not None and leadCutIn["status"] and self.detect_cut_in:
if self.radar_state.leadOne.status:
if leadCutIn["dRel"] < self.radar_state.leadOne.dRel:
leadCutIn["modelProb"] = 0.03
self.radar_state.leadOne = leadCutIn
self.radar_detected = True
else:
self.radar_detected = True
leadCutIn["modelProb"] = 0.03
self.radar_state.leadOne = leadCutIn
elif leadCenter is not None and leadCenter["status"]:
if self.radar_detected:
if leadCenter["dRel"] < self.radar_state.leadOne.dRel:
leadCenter["modelProb"] = 0.01
self.radar_state.leadOne = leadCenter
elif True: #가끔 다리교랑이 검출됨.. 커브길..
self.radar_detected = True
leadCenter["modelProb"] = 0.02
self.radar_state.leadOne = leadCenter
self.radar_state.leadsLeft = list(ll)
self.radar_state.leadsCenter = list(lc)
self.radar_state.leadsRight = list(lr)
def publish(self, pm: messaging.PubMaster):
assert self.radar_state is not None
radar_msg = messaging.new_message("radarState")
radar_msg.valid = self.radar_state_valid
radar_msg.radarState = self.radar_state
pm.send("radarState", radar_msg)
def get_lead(self, CS, md, tracks: dict[int, Track], index: int, lead_msg: capnp._DynamicStructReader,
model_v_ego: float, low_speed_override: bool = True) -> dict[str, Any]:
v_ego = self.v_ego
ready = self.ready
## backup SCC radar(0, 1 trackid)
track_scc = tracks.get(0)
if track_scc is None:
track_scc = tracks.get(1)
# Determine leads, this is where the essential logic happens
if len(tracks) > 0 and ready and lead_msg.prob > .5:
track = match_vision_to_track(v_ego, lead_msg, tracks, self.radar_lat_factor)
else:
track = None
if self.enable_radar_tracks in [-1, 2]:
if track_scc is not None and track is None:
track = track_scc
lead_dict = {'status': False}
radar = False
if track is not None:
lead_dict = track.get_RadarState(lead_msg.prob, self.vision_tracks[0].yRel)
radar = True
elif (track is None) and ready and (lead_msg.prob > .8):
lead_dict = self.vision_tracks[index].get_lead(md)
if self.enable_corner_radar > 0:
lead_dict = self.corner_radar(CS, lead_dict)
if low_speed_override:
low_speed_tracks = [c for c in tracks.values() if c.potential_low_speed_lead(v_ego)]
if len(low_speed_tracks) > 0:
closest_track = min(low_speed_tracks, key=lambda c: c.dRel)
# Only choose new track if it is actually closer than the previous one
if (not lead_dict['status']) or (closest_track.dRel < lead_dict['dRel']):
#lead_dict = closest_track.get_RadarState(lead_msg.prob, self.vision_tracks[0].yRel, self.vision_tracks[0].vLat)
lead_dict = closest_track.get_RadarState(lead_msg.prob, self.vision_tracks[0].yRel)
return lead_dict, radar
def corner_radar(self, CS, lead_dict):
lat_dist = 1e6
long_dist = 1e6
if 0 < CS.leftLatDist < 2.5:
lat_dist = CS.leftLatDist
long_dist = CS.leftLongDist
if 0 < CS.rightLatDist < 2.5 and CS.rightLongDist < long_dist:
lat_dist = -CS.rightLatDist
long_dist = CS.rightLongDist
if lat_dist == 0.0 or abs(lat_dist) >= 2.5 or long_dist == 1e6:
return lead_dict
if lead_dict['status']:
if lead_dict['dRel'] > long_dist:
lead_dict['dRel'] = long_dist
lead_dict['yRel'] = lat_dist
lead_dict['vRel'] = 0.0
lead_dict['vLead'] = CS.vEgo if CS.vEgo < lead_dict['vLead'] else lead_dict['vLead']
lead_dict['vLeadK'] = lead_dict['vLead']
lead_dict['aLead'] = CS.aEgo if CS.aEgo < lead_dict['aLead'] else lead_dict['aLead']
lead_dict['aLeadK'] = lead_dict['aLead']
lead_dict['aLeadTau'] = _LEAD_ACCEL_TAU
lead_dict['jLead'] = 0.0
lead_dict['vLat'] = 0.0
lead_dict['modelProb'] = 1.0
lead_dict['radarTrackId'] = -1
lead_dict['radar'] = True
else:
lead_dict['status'] = True
lead_dict['dRel'] = long_dist
lead_dict['yRel'] = lat_dist
lead_dict['vRel'] = 0.0
lead_dict['vLead'] = CS.vEgo
lead_dict['vLeadK'] = CS.vEgo
lead_dict['aLead'] = CS.aEgo
lead_dict['aLeadK'] = CS.aEgo
lead_dict['aLeadTau'] = _LEAD_ACCEL_TAU
lead_dict['jLead'] = 0.0
lead_dict['vLat'] = 0.0
lead_dict['modelProb'] = 1.0
lead_dict['radarTrackId'] = -1
lead_dict['radar'] = True
return lead_dict
# fuses camera and radar data for best lead detection
def main() -> None:
config_realtime_process(5, Priority.CTRL_LOW)
# wait for stats about the car to come in from controls
cloudlog.info("radard is waiting for CarParams")
CP = messaging.log_from_bytes(Params().get("CarParams", block=True), car.CarParams)
cloudlog.info("radard got CarParams")
# *** setup messaging
sm = messaging.SubMaster(['modelV2', 'carState', 'liveTracks'], poll='modelV2')
#sm = messaging.SubMaster(['modelV2', 'carState', 'liveTracks'], poll='liveTracks')
pm = messaging.PubMaster(['radarState'])
RD = RadarD(CP.radarDelay)
while 1:
sm.update()
RD.update(sm, sm['liveTracks'])
RD.publish(pm)
if __name__ == "__main__":
main()